Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Распределение Пуассона
Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности k появлений со бытия в этих испытаниях используют формулу Бернулли. Если же n велико, то пользуются асимптотической формулой Лапласа. Однако эта формула непригодна, если вероятность события мала ( Итак, поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно k раз. Сделаем важное допущение: произведение np сохраняет постоянное значение, а именно Воспользуемся формулой Бернулли для вычисления интересующей нас вероятности:
Так как
Приняв во внимание, что n имеет очень большое значение, вместо Рn(k) найдем Итак,
Таким образом (для простоты записи знак приближенства равенства опущен),
Эта формула выражает закон распределения Пуассона вероятностей массовых (п велико) и редких (р мало) событий. Замечание. Имеются специальные таблицы, пользуясь которыми можно найти Рn(k), зная k и Пример. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равно 0, 0002. Найти вероятность того, что на базу прибудут 3 негодных изделия. Решение. По условию, n = 5000, р=0, 0002, k = 3. Найдем
По формуле Пуассона искомая вероятность приближенно равна
|