Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Неравенства с одной переменной
Предложения 2х+7> 10-х, х2+7х< 2, (х+2)(2х-3)> 0 называют неравенствами с одной переменной. В общем виде это понятие определяют так: Определение. Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) < q(х) или f(х) > q(х) называется неравенством с одной переменной. Множество Х называется областью его определения. Значение переменной х из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решением. Решить неравенство - это значит найти множество его решений. Так, решением неравенства 2 х +7> 10- х, х Î R является число х=5, так как 2× 5+7> 10-5- истинное числовое неравенство. А множество его решений - это промежуток (1, ¥), который находят, выполняя преобразование неравенства: 2х+7> 10-х Þ 3х> Þ х> 1. В основе решения неравенств с одной переменной лежит понятие равносильности. Определение. Два неравенства называются равносильными, если их множества решений равны. Например, неравенства 2х+7> 10 и 2х> 3 равносильны, так как их множества решений равны и представляют собой промежуток Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используется свойства истинных числовых неравенств. Теорема 3. Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве. Тогда неравенства f(х) > q(х) и f(х)+ h(х) > q(х)+ h(х) равносильны на множестве X. Из этой теоремы вытекают следствия, которые часто используются при решении неравенств: 1) Если к обеим частям неравенства f(х) > q(х) прибавить одно и то же число d, то получим неравенство f(х)+ d > q(х)+ d, равносильное исходному. 2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному. Теорема 4. Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х из множества Х выражение h(х) принимает положительные значения. Тогда неравенства f(х)× h(х) > q(х)× h(х) равносильны на множестве X. Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х)умножить на одно и то же положительное число d, то получим неравенство f(х) × d > q(х) × d, равносильное данному. Теорема 5. Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х их множества Х выражение h(х) принимает отрицательные значения. Тогда неравенства f(х) > q(х) b f(х)× h(х) < q(х)× h(х) равносильны на множестве X. Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)× d < q(х) × d, равносильное данному. Решим неравенство 5х - 5 < 2х - 16, х Î R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.
Решением неравенства х < 7 является промежуток (- ¥, 7) и, следовательно, множеством решений неравенства 5х - 5 < 1х + 16 является промежуток (- ¥, 7).
|