Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Энергия заряженного конденсатора
Энергию заряженного конденсатора можно вычислить следующим образом. Обкладки конденсатора разбиваются на малые участки, заряд которых принимается за точечный. Учтем, что обкладки являются эквипотенциальными поверхностями. Пусть первая обкладка имеет заряд q потенциал , а вторая имеет заряд -q и потенциал . Тогда энергия первой обкладки, согласно (4.1), равна , а энергия второй равна . Полная энергия заряженного конденсатора равна или, с учетом (3. 6) . (4. 2) С помощью данного выражения можно найти силу, с которой обкладки плоского конденсатора притягиваются друг к другу. Для этого предположим, что расстояние между пластинами меняется, и в формулу (4. 2) подставим выражение (3. 7), обозначив переменный зазор между обкладками через х (вместо d): . (4.3) Будем считать заряд на обкладках постоянным (конденсатор отключен от источника напряжения) и, воспользовавшись соотношением, связывающим энергию и силу, получим . (4. 4)
В формуле (4. 4) знак минус указывает на то, что сила стремится уменьшить расстояние x между обкладками и является силой притяжения.
|