Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Закон распределения дискретной случайной величины.Стр 1 из 8Следующая ⇒
Понятия случайной величины. Закон распределения дискретной случайной величины. Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.
Различают два вида случайных величин: дискретные и непрерывные. Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.
Другими словами, возможные значения дискретной случайной величину можно перенумеровать.
Описать случайную величину можно с помощью ее закона распределения. Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.
Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т.е.
где р1+ р2+…+ рn=1
Такая таблица называется рядом распределения дискретной случайной величины.
Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.
Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi; pi), i=1, 2, …n. Полученную линию называют многоугольником распределения (рис.1).
рис.1
Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы): P(X=xi)=φ (xi), i =1, 2, 3…n
Задача№1. Вероятности того, что студент сдаст экзамен в сессию по математическому анализу и органической химии соответственно равны 0, 7 и 0, 8. Составить закон распределения случайной величины Х- числа экзаменов, которые сдаст студент. Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений: x1=0, x2=1, х3=2. Найдем вероятность этих значений.Обозначим события:
По условию:
Тогда:
Итак, закон распределения случайной величины Х задается таблицей:
Контроль: 0, 6+0, 38+0, 56=1.
|