Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ТЕМА 6. Измерение связи между явлениями. Методы изучения Корреляционных связей при оценке показателей здоровья и факторов окружающей среды






ЦЕЛЬ ЗАНЯТИЯ: Освоить принципы измерения корреляционной связи и овладеть методикой измерения связи между явлениями.

Методика проведения занятия: Студенты самостоятельно готовятся к практическому занятию по рекомендованной литературе и выполняют индивидуальное домашнее задание. Преподаватель в течение 10 минут проверяет правильность выполнения домашнего задания и указывает на допущенные ошибки, проверяет степень подготовки с использованием тестирования и устного опроса. Затем студенты самостоятельно вычисляют коэффициенты корреляции по способу квадратов (Пирсона) и по способу рангов (Спирмена); проводят оценки достоверности коэффициента корреляции. Оценивают полученные данные и формулируют заключение. В конце занятия преподаватель проверяет самостоятельную работу студентов.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Какие виды связи существуют между явлениями или признаками?

2. Является ли функциональная связь характерной для медико-биологических явлений?

3. Что такое корреляционная связь?

4. Можно ли считать, что при корреляционной связи значению одного признака соответствует несколько значений другого, взаимосвязанного с ним признака?

5. Можно ли утверждать, что корреляционная связь проявляется в массе наблюдений, т.е. в совокупности?

6. Что является критерием оценки характера и силы корреляции?

7. Можно ли утверждать, что коэффициент корреляции дает представление о наличии и направлении корреляционной связи?

8. С повышением температуры тела увеличивается частота пульса у большинства больных. Можно ли утверждать, что такая взаимосвязь относится к прямой корреляции?

9. Можно ли утверждать, что диапазон значений коэффициента корреляции находится в пределах от -1 до +1?

10. Каковы методы определения коэффициента корреляции?

11. Можно ли утверждать, что метод квадратов (Пирсона) дает более точные результаты по сравнению с методом рангов (Спирмена)?

12. Каков порядок определения коэффициента корреляции по методу рангов?

13. Как определяется характер и сила связи по коэффициенту корреляции?

14. Как оценивается достоверность коэффициента корреляции?

15. Можно ли утверждать, что если коэффициент корреляции более чем в три раза превышает свою ошибку, то он достоверен?

КРАТКОЕ СОДЕРЖАНИЕ ТЕМЫ:

Задача каждой науки – вскрыть и изучить наиболее существенные связи между явлениями и процессами. Известны два вида связи между явлениями (признаками): функциональная и корреляционная. Функциональная связь отражает строгую зависимость процессов или явлений и изменение какого-либо одного явления обязательно связано с изменением числовых значений другого явления на строго определенную величину. Функциональная связь, как правило, проявляется при физических и химических явлениях, где её можно представить в виде уравнения, формулы. Примеров функциональной связи может являться увеличение объема шара в строгой зависимости от увеличения его радиуса, расширение тела по мере увеличения температуры нагревания и т.д. Корреляция – понятие, которое также означает взаимосвязь между признаками. При корреляционных связях, характерных для медико-биологических явлений, значению одного признака соответствуют разные значения других признаков. Корреляционная связь необходима, например, при оценке взаимосвязей между стажем работы и уровнем заболеваемости работающих; между разными уровнями физических факторов окружающей среды и состоянием здоровья; между различными уровнями интенсивности нагрузки и частотой (уровнем) физиологических реакций организма; между сроками госпитализации и частотой осложнений. Статистика позволяет исследователю измерить связи, обосновать выводы и наглядно их иллюстрировать. Корреляционная связь бывает положительной - прямой (при увеличении одного признака увеличивается другой) и отрицательной - обратной (при увеличении одного показателя другой уменьшается). Коэффициент корреляции свидетельствует не только о направлении связи, но и об уровне этой связи. Сильная связь выражается коэффициентом от 0, 7 до 0, 99, средняя — от 0, 3 до 0, 69, слабая — до 0, 29. При нулевом значении коэффициента связи отсутствуют.

Наиболее простыми методом определения коэффициента корреляции являются ранговая корреляция: , где - коэффициент ранговой корреляции, d - разность рангов, n –число сопоставляемых пар признаков.При ранговой корреляции числовые выражения сравниваемых статистических рядов ранжируют, то есть проставляют ранговые номера для каждой цифры (от 1 и далее) и подставляют значения в формулу с учетом разницы порядковых значений. При расчете коэффициента корреляции методом квадратов (метод Пирсона) сначала вычисляют среднее значение в каждом вариационном ряду сравниваемых групп. Затем находят отклонение каждой величины ряда от полученной средней. Для устранения отрицательных значений эти величины возводят в квадрат и подставляют в формулу: rxy = , где dx и dy – отклонение каждой варианты от своей средней арифметической Мх и Мy. По величине коэффициента устанавливают направление и силу связи. Достоверность коэффициента определяют по таблицам критических значений (таблицам Каминского) при n’ = n-2 (приложение, табл. 4), а также при расчете средней ошибки и критерия достоверности t. Коэффициент корреляции должен превышать свою ошибку не менее чем в 3 раза. Формула ошибки коэффициента ранговой корреляции: m = , t = По методу Пирсона ошибка коэффициента корреляции вычисляется по формуле: mr = , t = . Значения t оценивается по таблице критических значений критерия t (при n< 30, приложение, табл. 2).

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ:

ЗАДАНИЕ 1: Вычислить коэффициент ранговой корреляции, определить направление и силу корреляционной связи, оценить достоверность полученных данных


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал