![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Уравнение непрерывности тока
В общем случае, для полупроводника, в объеме которого происходит генерация (G) и линейная рекомбинация, изменение концентрации носителей во времени заряда может быть определено в результате решения уравнения непрерывности:
в одномерном случае:
Если генерация в объеме отсутствует и, учитывая уравнения (3.28), получим:
Если напряженность электрического поля не зависит от координаты:
Если напряженность электрического поля не зависит от координаты ее можно определить, с помощью уравнения Пуассона, определяющего связь между распределением заряда и электрическим полем в образце:
Заряд ( Уравнения (3.36-3.38) устанавливают связь между концентрацией носителей заряда и основными, влияющими на них, процессами: диффузией, дрейфом, генерацией и рекомбинацией. Они позволяют по известным значениям потенциала (или напряженности поля) рассчитать пространственное распределение носителей заряда и его изменение со временем. Полупроводниковые приборы состоят, в основном из легированных областей p - или n -типа, при низких напряженностях электрического поля (при низких уровнях инжекции) концентрация основных носителей изменяется слабо, поэтому характер протекающих в этих материалах процессов будет определяться, в основном, неосновными носителями заряда. В стационарных условиях (
Пусть в образце n -типа избыточные носители инжектируются с одной стороны образца, при этом напряжение смещения отсутствует. В этом случае мы имеем одномерное уравнение непрерывности:
Его решение должно удовлетворять граничным условиям Диффузионные длины для электронов Ln и для дырок Lp характеризуют то расстояние, на которое в результате диффузии проникнут неосновные носители, не прорекомбинировав с основными, то есть за время жизни. Изменим теперь второе граничное условие, полагая, что все избыточные носители удаляются из образца при
С помощью уравнения (3.25) можно рассчитать плотность дырочного тока при
Уравнения (3.41), (3.42) будут широко использоваться при анализе процессов в таких полупроводниковых приборах, как биполярные транзисторы и диоды. Причем для p – области будем использовать уравнение для неосновных носителей – электронов, для n – области для дырок. Уравнение для носителей противоположного знака решать не будем, полагая, что соблюдается условие квазиэлектронейтральности и Δ p = Δ n.
|