Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Относительного движения МТСтр 1 из 3Следующая ⇒
Глава 2. Динамика относительного движения МТ Дифференциальные уравнения относительного движения МТ Пусть имеется инерциальная система отсчета О1x1y1z1. Рассмотрим движение МТ массы m по отношению к неинерциальной системе отсчета Oxyz, которая произвольным образом (с ускорением) движется по отношению к инерциальной системе отсчета (рис. 18). Рис. 18 На основании второго (основного) закона динамики – соотношения (1.2) для несвободной МТ имеем: , (2.1) где , – абсолютное ускорение МТ – ускорение МТ по отношению к инерциальной системе координат. Используя теорему о сложении скоростей в сложном движении МТ (Ч.1 Кинематика), перепишем соотношение (2.1) в виде: , (2.2) здесь – относительное ускорение МТ, – переносное ускорение МТ, – ускорение Кориолиса. Совершив простейшие алгебраические преобразования и введя обозначения сил инерции, получим дифференциальное уравнение относительного движения МТ:
, (2.3) где – переносная сила инерции, – сила инерции Кориолиса. В этих соотношениях использованы формулы (Ч.1 Кинематика) для ускорения точки НМС в общем случае ее движения и формулы для ускорения Кориолиса, в которых – абсолютное ускорение начала неинерциальной системы координат, и – угловые скорость и ускорение неинерциальной системы координат по отношению к инерциальной, и – относительные скорость и ускорения МТ по отношению неинерциальной системы координат. Из соотношения (2.3) следует, что движение МТ относительно неинерциальной системы отсчета можно рассматривать так же, как и относительно инерциальной, добавляя при этом в правую часть уравнения движения МТ переносную и кориолисову силы инерции.
|