Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнения прямой в пространстве






Прямая в пространстве

Уравнения прямой в пространстве

Напомним, что в аналитической геометрии любая пространственная линия рассматривается как пересечение двух поверхностей.

Так как каждая прямая всегда может быть помещена в некоторую плоскость и при пересечении двух плоскостей образуется прямая, то в аналитической геометрии прямую в пространстве принято задавать как пересечение двух плоскостей.

Итак, пусть и – уравнения любых двух различных плоскостей, содержащих прямую . Тогда координаты любой точки прямой удовлетворяют одновременно обоим уравнениям, т.е. являются решениями системы

(1)

Систему (1) называют общими уравнениями прямой в пространстве. Так как через любую прямую в пространстве проходит множество плоскостей, то любую прямую можно задать ее общими уравнениями и не единственным образом.

Недостатком задания прямой общими уравнениями является то, что по их виду ничего нельзя сказать о расположении прямой в пространстве. При решении задач удобнее использовать другие, более наглядные формы записи уравнений прямой – параметрические или канонические уравнения.

Получим параметрические и канонические уравнения прямой в пространстве, решив следующую задачу.

ЗАДАЧА 1. Записать уравнение прямой в пространстве, проходящей через точку , параллельно вектору .

Также, как и для прямой на плоскости, вектор, параллельный прямой в пространстве, называют направляющим вектором этой прямой.

Пусть – текущая точка прямой. Обозначим через и – радиус-векторы точек и .

Рассмотрим векторы и . По условию задачи они параллельны.

Следовательно, существует такое число ( называют параметром), что

,

, (2*)

или, в координатной форме,

(2)

Уравнение (2*) и систему уравнений (2) называют параметрическими уравнениями прямой в пространстве (в векторной и координатной форме соответственно).

Если в задаче 1 вектор не параллелен ни одной из координатных плоскостей (т.е. если , и ), то из уравнений системы (2) можно выразить параметр :

, ,

и заменить систему (2) одним равенством вида:

. (3)

где – координаты некоторой точки на прямой; , , – координаты направляющего вектора прямой.

Уравнения (3) называют каноническими уравнениями прямой в пространстве.

Частным случаем канонических уравнений являются уравнения прямой, проходящей через две заданные точки.

Действительно, пусть прямая проходит через две точки и . Тогда вектор

является ее направляющим вектором, и канонические уравнения этой прямой будут иметь вид

. (4)

Уравнения (4) называют уравнениями прямой, проходящей через две заданные точки и .



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал