Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Текстовые задачи. 1. В театре 16 рядов, в первом ряду 10 мест, в последнем – 70Стр 1 из 5Следующая ⇒
1. В театре 16 рядов, в первом ряду 10 мест, в последнем – 70. Известно, что каждый следующий ряд имеет на одно и то же число мест больше, чем предыдущий. Сколько всего мест в театре? А) 640; Б) 360; В) 720; Г) так не может быть. 2. Из-под земли бьют четыре источника. Первый заполняет бассейн за 1 день, второй – за 2 дня, третий – за 3 дня, четвертый – за 4 дня. Сколько времени потребуется четырем источникам вместе, чтобы заполнить бассейн? (задача Герона Александрийского, I в. до н.э.) А) 10 дней; Б) 4 дня; В) дня; Г) дня. 3. Цена на книгу сначала увеличилась на 20%, а потом снизилась на 20% (от новой цены). Сравнить первоначальную цену и итоговую. А) первоначальная выше; Б) равны; В) итоговая выше. 4. Марии 12 лет. Она вдвое младше, чем будет Ивану, когда ей будет столько лет, сколько ему сейчас. Сколько лет Ивану? А) 18; Б) 12; В) нельзя найти. 5. Из пункта А в пункт В одновременно выехали два велосипедиста. При этом скорость второго была вдвое больше, чем скорость первого. Каждый из них, прибыв в пункт В, сразу повернул обратно. Первый велосипедист обратный путь проехал с той же скоростью. На обратном пути скорость второго была вдвое меньше, чем скорость первого. Кто из них раньше вернулся в пункт А? А) первый; Б) второй; В) одновременно. 6. Что больше 5% от 10% заданного числа или 10% от его 5% А) первое; Б) второе; В) равны; Г) зависит от числа. 7. В центре прямоугольного листа бумаги размером 20´ 10 вырезана прямоугольная дыра. Периметр дыры равен 20. Найти длину диагонали дыры, если известно, что площадь дыры максимальная среди возможных прямоугольных дыр с тем же периметром. А) 5; Б) 10 ; В) ; Г) нельзя найти. 8. Автомобиль ехал некоторое время со скоростью 100 км/ч, а потом еще столько же времени – со скоростью 90 км/ч. Найти среднюю скорость автомобиля на всем пути. А) 190 км/ч; Б) 95 км/ч; В) 90 км/ч; Г) 10км/ч. 9. Производительность труда на производстве повысилась на 30%. На сколько процентов сократилось время, затрачиваемое на тот же объем работы? А) ; Б) ; В)30; Г) . Ответы:
Работа, производство, технология
Между величинами, описывающими равномерное движение и величинами, характеризующими процесс работы, имеется полная аналогия. Эту аналогию удобно представить в виде следующей таблицы:
Почему же мы разделяем текстовые задачи на движение и на работу? Дело в том, что имеется одно существенное отличие между этими типами задач: при совместной работе нескольких объектов, выполняющих однородную работу, их общая производительность является суммой производительностей отдельных объектов, в задачах на «движение» такого эффекта нет. Кроме того, во многих задачах на работу точный характер этой работы не определяется. В таких случаях бывает удобным принять объем всей работы за единицу и измерять части этой работы в долях от единицы. Проиллюстрируем сказанное на примерах.
Вводные задачи 1 и 2 содержат лишние данные и имеют целью подготовить школьников к решению задач на совместную работу. Рекомендуем к таким задачам отнестись со всем вниманием. 3. В цехе поставили автомат, производительность которого была на 8 деталей в час выше производительности рабочего. После двух часов работы автомат выполнил шестичасовую норму рабочего. Какова производительность автомата? x дет/ч – производительность рабочего, (x+8) дет/ч – производительность автомата ; . 12 дет/ч – производительность автомата. 4. Одна машинистка печатает страницу за 6 мин, а другая – за 10 минут. Они вместе отпечатали рукопись, одновременно начав и закончив работу. Первая отпечатала 150 страниц. Сколько страниц отпечатала вторая машинистка? Сколько страниц распечатает за это же время принтер, производительность которого на 50% больше? стр./мин – производительность 1 машинистки, тогда мин. время работы. стр./мин – производительность 2 машинистки, стр. отпечатала 2 машинистка. 5. В январе два цеха изготовили 1080 деталей. В феврале первый цех увеличил выпуск деталей на 15%, второй на 12%, оба цеха изготовили 1224 детали. Сколько деталей изготовил в феврале каждый цех? Пусть х деталей изготовил в январе 1 цех, y деталей – 2 цех,
6. Мастерская в определенный срок должна выпустить 5400 пар обуви. Фактически она выпускала в день на 30 пар больше, чем предполагалось, и выполнила заказ на 9 дней раньше срока. За сколько дней был выполнен заказ? Пусть х пар/день план мастерской, , . Ответ: 36 дней. 7. Лена набирала на компьютере рукопись книги. Ей надо было набирать по 20 страниц в день, чтобы успеть выполнить работу к сроку. Она же набирала ежедневно на 2 страницы больше, поэтому в последний день ей осталось набрать 6 страниц. Сколько страниц было в рукописи? Пусть х страниц было в рукописи, , 8. Два экскаватора, работая одновременно, выполняют некоторый объем земляных работ за 3 ч 45 минут. Один экскаватор, работая отдельно, может выполнить этот объем работ на 4 часа быстрее, чем другой. Сколько времени требуется каждому экскаватору в отдельности для выполнения того же объема земляных работ? . Ответ: 6часов, 10 часов. 9. Одна из дорожных бригад может заасфальтировать некоторый участок дороги на 4 часа быстрее, чем другая. За сколько часов может заасфальтировать участок каждая бригада, если известно, что за 24 часа совместной работы они заасфальтировали 5 таких участков? Ответ: 8 ч и 12 ч 10. Чтобы наполнить бассейн, сначала открыли одну трубу и через 2 ч, не закрывая ее, открыли вторую. Через 4 ч совместной работы труб бассейн был наполнен. Одна вторая труба могла бы наполнить бассейн в 1, 5 раза быстрее, чем одна первая. За сколько часов можно наполнить бассейн через каждую трубу? Обозначим х - время в часах, за которое наполняет бассейн одна первая труба, вторая – y. Тогда . - часть бассейна, наполняемая первой трубой за 1 час, - часть бассейна, наполняемая второй трубой за 1 час, - часть бассейна, наполняемая обеими трубами за 4 часа.
11. Двое рабочих вместе могут выполнить некоторую работу за 10 дней. После 7 дней совместной работы, один из них был переведен на другой участок, второй закончил работу, проработав еще 9 дней. За сколько дней каждый рабочий мог выполнить всю работу? Пусть х и y – производительности 1 и 2 рабочего, V – объем работы, , где , а и . Подставляя значения в полученное равенство, получим . Необходимо найти , аналогично . Ответ: 15 и 30 дней. 12. Отряд механизаторов в весеннее-посевную кампанию в первый день вспахал 100 га пашни, а в каждый следующий день – на 3 га больше, чем в предыдущий. Найти, сколько гектаров пашни отряд механизаторов вспахал за 19 дней. Есть арифметическая прогрессия с первым членом и разностью , найти сумму первых 19 членов арифметической прогрессии. ; . Ответ: 2413 га. 13. Бак заполняют керосином за 2 часа 30 минут с помощью трех насосов, работающих вместе. Производительности насосов относятся как 3: 5: 8. Сколько процентов объема будет заполнено за 1 час 18 минут совместной работы второго и третьего насосов? Так как объем бака не указан, примем его за 1. Пусть коэффициент пропорциональности равен х, тогда производительности насосов равны 3х, 5х, 8х. И время наполнения бака при совместной работе всех трех насосов равно , Производительность второго насоса равна Производительность третьего насоса - Совместная производительность второго и третьего насосов - За 1 час 18 минут второй и третий насосы наполнят объема бака. Ответ: 42, 25.
Задачи с экономическим содержанием 1. Зарплату повысили на р%. Затем новую зарплату повысили на 2р%. В результате двух повышений зарплата увеличилась в 1, 32 раза. На сколько процентов зарплата была повышена во второй раз? Пусть исходная зарплата составляла а рублей. Тогда после первого повышения она стала равна рублей. После второго повышения (на 2р%) зарплата стала равна рублей. По условию задачи эта величина равна 1, 32а. Получаем уравнение: Ответ: 20. 2. Первоначальная цена товара на торгах повышалась несколько раз на одно и то же количество рублей. После третьего повышения цена равнялась 1200 рублей, а после двенадцатого повышения – 1650 рублям. Через сколько повышений первоначальная цена удвоилась? Пусть х – первоначальная цена товара на торгах. Пусть после первого повышения цена стала х+а рублей, после второго х+2а рублей и после третьего повышения цена стала равной х+3а рублям, что по условию равно 1200 рублям. Т.е. . После двенадцатого повышения цена стала равной Отсюда и Следовательно, . Теперь пусть число повышений равно n. Составим равенство: . Отсюда Следовательно, цена товара удвоится через 21 повышение первоначальной цены. Ответ: 21. 3. На рынке костюм, состоящий из пиджака и брюк, стоит на 20% дешевле, чем такой же костюм в магазине, причем брюки стоят на 35% дешевле, чем в магазине, а пиджак – на 10%. Сколько процентов стоимости этого костюма в магазине составляет стоимость пиджака? Пусть х рублей стоит пиджак в магазине, а y рублей стоят брюки в магазине, тогда на рынке пиджак стоит 0, 9х рублей, а брюки – 0, 65 y рублей. Тогда , т.е. .
Ответ: 60. 4. В течение года завод дважды увеличивал выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в январе завод ежемесячно выпускал 600 изделий, а в декабре того же года – 726 изделий. 600(1+а) - увеличение продукции завода в первый раз, 600(1+а)2 – увеличение во второй раз. Следовательно, , . Ответ: 10. 5. После двух повышений зарплата увеличилась в 1, 43 раза. При этом число процентов, на которое повысилась зарплата во второй раз, было в 3 раза больше, чем в первый раз. На сколько процентов повысилась зарплата во второй раз? Пусть х рублей – первоначальная зарплата. Тогда рублей зарплата после первого повышения, рублей зарплата после второго повышения. Следовательно, Ответ: 30. 6. За первый год предприятие увеличило выпуск продукции на 8%. В следующем году выпуск увеличился на 25%. На сколько процентов вырос выпуск продукции по сравнению с первоначальным? Пусть х изделий – плановый выпуск продукции, 1, 08х – выпуск продукции в конце первого года, 1, 08х+1, 08х =1, 35х Ответ: 35. 7. В течение календарного года зарплата каждый месяц повышалась на одно и то же число рублей. За июнь, июль, август зарплата в сумме составила 9900 рублей, а за сентябрь, октябрь и ноябрь – 10350 рублей. Найдите сумму зарплат за весь год. Пусть в январе зарплата составила рублей, в феврале - и т.д.Тогда сумма за июнь, июль, август составит - , а сумма за сентябрь, октябрь, ноябрь составит . Получаем систему уравнений:
Так как мы имеем дело с арифметической прогрессией, то .
Ответ: 39300. 8. Акциями предприятия владеют фирмы А, В и С. Количество их акций находится в отношении 4: 12: 9 и составляет 75% от числа всех выпущенных акций. Остальными 350000 акций владеют работники этого предприятия. Сколько акций имеет каждая из фирм? Пусть х – количество всех выпущенных акций. Тогда . Следовательно, . Но , . Тогда фирма А владеет акций, фирма В владеет акций, фирма С владеет акций. Ответ: 168000, 504000 и 378000 акций 9. За 10 дней Карл украл у Клары 165 кораллов и из них 147 – в первые 7 дней. Каждый день он крал на одно и то же число кораллов меньше, чем в предыдущий день. Сколько кораллов Карл украл в десятый день? Пусть кораллов украл Карл в 1 день, тогда во 2 день - , в 3 день - , в 4 день - и т.д., в 10 день - кораллов. В первые семь дней - кораллов, в последние три дня - кораллов. Получаем: В десятый день Карл украл - коралла. Ответ: 3. 10. Цена товара была дважды повышена на одно и то же число процентов. На сколько процентов повышалась цена товара каждый раз, если его первоначальная стоимость 200 рублей, а окончательная 338 р.? 11. При покупке ребенку новых лыж с ботинками родителям пришлось заплатить на 35% больше, чем два года назад, причем лыжи подорожали с тех пор на 20%, а ботинки на 70%, Сколько процентов от стоимости лыж с ботинками составляла два года назад стоимость лыж? 12. Объемы ежегодной добычи нефти первой, второй и третьей скважинами относятся как 7: 6: 5. Планируется уменьшить годовую добычу нефти из первой скважины на 4%, а из второй – на 2%. На сколько процентов нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объем добываемой за год нефти не изменился? 13. При подготовке к экзамену ученик каждый день увеличивал количество решенных задач на одно и то же число. С 3 мая по 6 мая включительно он решил 24 задачи, а с 5 мая по 10 мая – 72 задачи. Сколько задач ученик решил с 3 мая по 10 мая включительно? 14. При подготовке к экзамену ученик каждый день с 1 по 8 июня включительно увеличивал количество решенных задач на одно и то же число. С 1 июня по 4 июня включительно он решил 24 задачи, а с 2 июня по 6 июня – 45 задач. Сколько задач ученик решил 8 июня? 15. В комиссионном магазине цена товара, выставленного на продажу, ежемесячно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый месяц уменьшалась цена товара, если выставленный на продажу за 8000 рублей, он через три месяца стал стоить 4096 рублей. 16. Вкладчик сначала снял со своего счета в сбербанке своих денег, потом оставшихся и еще 999 рублей. После этого у него осталось на сберкнижке всех денег. Каким был первоначальный вклад? 17. Заработные платы рабочего за январь и февраль относятся как 9: 8, а за февраль и март как 6: 8. За март он получил на 450 рублей больше, чем за январь, и за перевыполнение квартального клана рабочему начислили премию в размере 20% его трехмесячного заработка. Найдите размер премии
|