Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сформулировать и доказать теорему о связи смешанного произведения с объемом параллелепипеда
Найдем по определению смешанное произведение: , где — угол между векторами и . Модуль векторного произведения (по геометрическому свойству 1) равен площади параллелограмма, построенного на векторах и :. Поэтому . Алгебраическое значение длины проекции вектора на ось, задаваемую вектором , равно по модулю высоте параллелепипеда, построенного на векторах (рис. 1.47). Поэтому модуль смешанного произведения равен объему этого параллелепипеда:
Записать условие компланарности векторов Три вектора компланарны если их смешанное произведение равно нулю.
25. Вывести способ вычисления смешанного произведения в координатах
Покажем, как находится смешанное произведение, если известны координаты умножаемых векторов в прямоугольной системе координат. Пусть - координатные векторы. Векторное произведение в координатах имеет вид Таким образом, смешанное произведение векторов равно определителю матрицы третьего порядка, строками которой являются координаты умножаемых векторов, то есть,
|