Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение матричных уравнений






Рассмотрим простейшие матричные уравнения вида А× Х = В (14) и Х× А = В (15).

Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А - либо вырожденная, либо прямоугольная.

1) Если А – квадратная и| А | ¹ 0, то уравнения (14) и (15) имеют единственное решение каждое: Х = А-1× В и Х = В× А-1 соответственно, если эти произведения определены. И не имеют решения, если они не определены.

2) А – квадратная матрица, но | А | = 0, либо А - прямоугольная матрица. Если матрица А имеет размерность m´ n, а матрица В – размерность р´ к, то, при m ¹ р уравнение (14) не имеет решения, а при n ¹ к не имеет решения уравнение (15). Если же m = р, то в уравнении (14) матрица Х должна иметь к столбцов, а в уравнении (15) она должначц3

иметь р строк. Решение этих матричных уравнений сводится к решению систем линейных уравнений.

Пример 5. Найдите матрицу Х, если А× Х = В, где А = , В = .

Из примера 5 следует, что матрица А имеет обратную, поэтому Х = А-1× В. Используя найденную в примере 5 матрицу А-1, получим Х = × = = .

Пример 6. Найдите матрицу Х, если Х× А = В, где А = , В = . Так как | А | = 0, то для А обратной матрицы нет.По правилам умножения матриц, в матрице В столько строк, сколько их в матрице Х, и столько столбцов, сколько их в матрице А. Последнее условие выполняется, следовательно, уравнение имеет решение. На матрицу Х накладывается ограничения: в матрице Х должно быть два столбца и три строки. Чтобы найти элементы такой матрицы, обозначим их и перейдём к системе линейных уравнений. Пусть Х = . Тогда Х× А = . Полученная матрица равна матрице В тогда и только тогда, когда их соответствующие элементы равны. Получим три системы уравнений. Эти системы не имеют решений, следовательно, не имеет решения и данное матричное уравнение.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2026 год. (0.227 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал