Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А× Х = В (14) и Х× А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А - либо вырожденная, либо прямоугольная. 1) Если А – квадратная и| А | ¹ 0, то уравнения (14) и (15) имеют единственное решение каждое: Х = А-1× В и Х = В× А-1 соответственно, если эти произведения определены. И не имеют решения, если они не определены. 2) А – квадратная матрица, но | А | = 0, либо А - прямоугольная матрица. Если матрица А имеет размерность m´ n, а матрица В – размерность р´ к, то, при m ¹ р уравнение (14) не имеет решения, а при n ¹ к не имеет решения уравнение (15). Если же m = р, то в уравнении (14) матрица Х должна иметь к столбцов, а в уравнении (15) она должначц3 иметь р строк. Решение этих матричных уравнений сводится к решению систем линейных уравнений. Пример 5. Найдите матрицу Х, если А× Х = В, где А = Из примера 5 следует, что матрица А имеет обратную, поэтому Х = А-1× В. Используя найденную в примере 5 матрицу А-1, получим Х = Пример 6. Найдите матрицу Х, если Х× А = В, где А =
|