Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Периодичность.






Если существует такое число , что верно то функция называется периодической, - период.

Примеры. , период , , период .

О влиянии коэффициента на период. Если период равен . Если , колебания становятся чаще, а период меньше. Почему так происходит? Точка прошла расстояние , в это время - прошло в раз больше, то есть в раз больше колебаний произошло на этом отрезке, длина которого . Если наоборот, период больше, а колебания реже, чем у исходного графика.

 

Чётность и нечётность.

Чётная функция: . График чётной функции симметричен относительно оси 0y, т.е. при зеркальном отражении переходит в точно такой же график, примером может быть парабола, а также cos(x).

Нечётная функция: . График нечётной функции симметричен относительно точки (0, 0), то есть после поворота на 1800 график был бы таким же, примером может быть кубическая парабола или любая другая нечётной степени, или например синус, тангенс.

 

Существует такое неочевидное свойство разложения на чётные и нечётные компоненты:

Свойство. Любая функция f представима в виде суммы чётной и нечётной, то есть .

Доказательство. Введём две функции: , . Первая из них чётна, вторая нечётна. Видно, что если заменить на , то для получится выражение, равное исходному, а вот для разность в числителе будет противоположна: = .

Сумма этих функций: = = = .

итак, .

Если чётную и нечётную компоненты записать для функции , то получатся так называемые гиперболический косинус и гиперболический синус: , .

 

Вообще, существует 3 способа задания функций - явный, неявный, параметрический.

Способ задания: Явно Неявно Параметрически
Вид уравнения:
Пример (окружность)
Пример (прямая)

 

Для поверхностей тоже существуют эти 3 способа:

Явный: Неявный:

Параметрический: (в этом случае обязательно будет два параметра). Например, 2 параметра на сфере: широта и долгота.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2026 год. (0.582 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал