Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Числовые характеристики дискретных случайных величин






 

Как уже известно, закон распределения пол­ностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничи­ваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины. К числу важных числовых характеристик относится математическое ожи­дание.

Для решения многих задач достаточно знать мате­матическое ожидание. Например, если известно, что мате­матическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в сред­нем выбивает больше очков, чем второй, и, следова­тельно, стреляет лучше второго.

 

Математическое ожидание дискретной

случайной величины

 

Математическим ожиданием дискретной слу­чайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения xl x2,..., хп, вероятности которых соответ­ственноравны p1, p2, p3, … рп . Тогда математическое ожи­дание М (X) случайной величины X определяется равен­ством

 

М (X) = xlpl + х2р2 +... + хпрп.

Пример 1. Найти математическое ожидание случайной вели­чины X, зная закон ее распределения:

X      
р 0, 1 0, 6 0, 3

Решение. Искомое математическое ожидание равно сумме произведений всех возможных значений случайной величины на их вероятности:

М (Х) = 3 × 0, 1+5 × 0, 6 + 2 × 0, 3 = 3, 9.

 

Дисперсия

Легко указать такие случайные величины, кото­рые имеют одинаковые математические ожидания, но раз­личные возможные значения. Рассмотрим, например, дискретные случайные величины X и У, заданные сле­дующими законами распределения:

 

X - 0, 01 0, 01   У -100  
р 0, 5 0, 5   р 0, 5 0, 5

Найдем математические ожидания этих величин:

М(Х) =-0, 01× 0, 5 + 0, 01 × 0, 5 = 0,

М (У) = -100 × 0, 5+100 × 0, 5 = 0.

 

Здесь математические ожидания обеих величин одинаковы, а возможные значения различны, причем X имеет воз­можные значения, близкие к математическому ожиданию, а У - далекие от своего математического ожидания. Таким образом, зная лишь математическое ожидание случайной величины, еще нельзя судить ни о том, какие возможные значения она может принимать, ни о том, как они рас­сеяны вокруг математического ожидания. Другими сло­вами, математическое ожидание полностью случайную величину не характеризует.

По этой причине наряду с математическим ожиданием вводят и другие числовые характеристики. Так, например, для того чтобы оценить, как рассеяны возможные зна­чения случайной величины вокруг ее математического ожидания, пользуются, в частности, числовой характе­ристикой, которую называют дисперсией.

Прежде чем перейти к определению и свойствам дис­персии, введем понятие отклонения случайной величины от ее математического ожидания.

 

Отклонением называют разность между случайной величиной и ее математическим ожиданием: Х – М(Х)

 

На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее сред­него значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их сред­нее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т. е. М [X— М (X)], для любой случайной величины равно нулю. Это свойство объясняется тем, что одни возможные отклонения положительны, а другие -отрицательны; в результате их взаимного пога­шения среднее значение отклонения равно нулю. Эти со­ображения говорят о целесообразности заменить возмож­ные отклонения их абсолютными значениями или их квадратами.

 

Дисперсией (рассеянием) дискретной случайной вели­чины называют математическое ожидание квадрата откло­нения случайной величины от ее математического ожидания:

Д(Х) = М [X— М (X)] 2

 

Из этой формулы следует, для того чтобы найти дисперсию, до­статочно вычислить сумму произведений возможных зна­чений квадрата отклонения на их вероятности.

Пример:

Найти дисперсию случайной величины Х, которая задана следующим законом распределения:

 

X      
р 0, 3 0, 5 0, 2

Найдем математическое ожидание:

М(Х) = 1 × 0, 3 + 2 × 0, 5 + 5 × 0, 2 =2, 3

Найдем все возможные значения квадрата отклонения случайной величины от математического ожидания:

[ х 1— М (X)] 2 = (1— 2, 3) 2= 1, 69

[ х2 — М (X)] 2 = (2— 2, 3) 2=0, 09

[ х 3— М (X)] 2 = (5— 2, 3) 2= 7, 29.

Напишем закон распределения квадрата отклонения:

[ х 1— М (X)] 2 1, 69 0, 09 7, 29
р 0, 3 0, 5 0, 2

 

По определению дисперсии

Д(Х) = 1, 69 × 0, 3 + 0, 09 × 0, 5 + 7, 29 × 0, 2 = 2, 01

 

Данный способ вычисления дисперсии достаточно громоздкий. В математике доказана теорема, которая позволяет вычисления дисперсии более простым способом.

Теорема: Дисперсия равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания:

 

Д(Х) = М(Х2) —[М (X)] 2

 

Эта теорема позволяет искать значение дисперсии другим способом.

Пример: Найти дисперсию случайной величины Х, которая задана следующим законом распределения:

 

X      
р 0, 3 0, 5 0, 2

Найдем математическое ожидание:

М(Х) = 1 × 0, 3 + 2 × 0, 5 + 5 × 0, 2 =2, 3

 

Напишем закон распределения случайной величины Х2:

X 2 12 22 52
р 0, 3 0, 5 0, 2

 

Найдем математическое ожидание М(Х 2):

М(Х 2) = 1 × 0, 3 + 4 × 0, 5 + 25 × 0, 2 = 0, 3+2+5=7, 3

 

Тогда дисперсия равна

Д(Х) = М(Х2) —[М (X)] 2= 7, 3 – (2, 3)2 = 2, 01.

Задача. Сравнить дисперсии случайных величин, заданных законами распределения:

 

X - 1         У -1      
р 0, 48 0, 01 0, 09 0, 42   р 0, 19 0, 51 0, 23 0, 05

 

Посчитав математическое ожидание каждой величины, получим М(Х) = М(У) = 0, 97

 

Посчитаем дисперсию каждой величины:

 

X2 -1         У2 -1      
р 0, 48 0, 01 0, 09 0, 42   р 0, 19 0, 51 0, 23 0, 05

 

М(Х2) = -1 × 0, 48 + 1 × 0, 01 + 4 × 0, 09 + 9 × 0, 42 = 3, 67

Д(Х) = 3, 67 – 0, 972 = 2, 73

 

М(У2) = -1 × 0, 19 + 1 × 0, 51 + 4 × 0, 23 + 9 × 0, 05 = 2, 07

Д(У) = 2, 07 –0, 972 = 1, 69

 

Итак, возможные значения математического ожидания двух распределений одинаковы, а дисперсии различны, причем Д(Х) > Д(У).

 

Случайная величина и ее математическое ожидание имеют одну размерность, а дисперсия имеет размерность квадрата случайной величины. Этого недостатка можно избежать, если ввести еще одну характеристику – среднее квадратичное отклонение, значение которого определить как квадратный корень из дисперсии.

Среднее квадратичное отклонение s(Х) = .

 

В рассмотренной выше задача s(Х) = = 1, 65, а s(У) = = 1, 3.

 

Математическое ожидание, дисперсия, среднее квадратичное отклонение и другие числа позволяют в сжатой форме описать наиболее общие черты распределения, их называют числовыми характеристиками случайной величины.

Следует заметить: сама величина Х – случайная, а ее числовые характеристики являются величинами неслучайными, а постоянными. Поэтому их часто называют параметрами распределения случайной величины. При решении практических задач приходится чаще оперировать параметрами распределения, оставляя в стороне законы распределения.

 

Функция распределения случайной величины.

 

До сих пор в качестве полного описания дискретной случайной величины мы рассматривали ее закон распределения. Однако такое описание случайной величины Х не является единственным и более того, он не универсально. Этот способ не подходит для описания непрерывной случайной величины.

Для описания поведения случайной величины Х возможен и другой подход. Можно рассматривать не все вероятности Х = х для разных х, как это происходит в ряде распределения, вероятности события Х < х, где х – текущая переменная. Тогда вероятность Р(Х < х) зависит от х, то есть является функцией от х. Обо­значим эту функцию F(x).

Определение. Функцией распределения случайной вели­чины X называется функция F(x), задающая вероятность того, что случайная величина X принимает значение, меньшее х.

F(x) = P(X< x) (1)

Иногда функцию F(x) называют интегральной функцией распределения. Такую функцию можно построить как для дисретной, так и для непрерывной величины.

 

Построим теперь функцию F(x) распределения случайной величины, ряд распределения которой представлен в таблице.

X        
р

 

По определению F(x) = P(X< x) = . Тогда

А) при х £ 1 F(x) = P(X< 1)= 0 (в том числе и для х = 1, так как F(1) = P(X< 1) =0)

Б) при 1 < х £ 2 F(x) = P(X=1) =

В) при 2 < х £ 3 F(x) = P(X=1) + Р(Х=2) = + = =

Г) при 3 < х £ 4 F(x) = P(X=1) + Р(Х=2) + Р(Х=3) = + + =

Д) при х > 4 F(x) = P(X=1) + Р(Х=2)+ Р(Х=3) + Р(Х=4) = + + + = 1

Следовательно: F(x) = .

 

 

По заданной функции можно построить ее график.

Полученная нами функция распределения имеет следующий график:

 
 

 

 


Для дискретной случайной величины график функции распределения представляет собой разрывную ступенчатую линию. Когда переменная х проходит через какое-нибудь из возможных значений случайной величины, значение функции распределения меняется скачкообразно, т. е. функция имеет скачок в тех точках, в которых случайная величина принимает конкретное значение согласно ряду распределения, причем величина скачка равна вероятности этого значения. Сумма величин всех скачков функции распределения равна 1. В интервалах между значе­ниями случайной величины функция F(x) постоянна. Отметим, что по функции распределения дискретной случайной величины можно легко восстановить ее ряд распределения.

Функция распределения случайной величины обладает следующими свойствами:

1) Область значений функции: [0; 1].

2) Функция распределении яслучайной величины есть неубывающая функция.

3) Вероятность попадания случайной величины в интервал [х1; х2) равна приращению функции на этом интервале: Р(х1≤ Х< х2) = F(х2) - F(х1)

Предположим, что график функции F(x) распределения описывает число стандартных деталей среди четырех отобранных. Она имеет четыре скачка по числу принимаемых случайной величиной X значений. По мере возрастания числа возможных значений случайной вели­чины с одновременным уменьшением величины интервалов между ними число скачков становится больше, а сами скачки — меньше, вследствие чего ступенчатая кривая становит­ся более плавной. В этом случае дискретная случайная величина постепенно приближается к непрерывной, а ее функция распределения — к непрерывной функции. Ниже представлен график непрерывной функции (в данном случае функции нормального распределения).

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.016 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал