![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы определения порядка реакции. Исходные данные для определения порядка реакции обычно берутся из экспериментально определенных кинетических кривых
Исходные данные для определения порядка реакции обычно берутся из экспериментально определенных кинетических кривых. При этом во всех методах может быть определен либо временной порядок (одна кинетическая кривая), либо концентрационный (несколько кинетических кривых, а концентрации и скорости берутся только для нулевого момента времени). Если в реакции участвует несколько исходных веществ, то, как правило, невозможно определить одновременно все частные порядки. Их значения определяются последовательно для каждого реагента. Для этого используется процедура, известная как «метод изолирования Оствальда». Суть ее состоит в том, что концентрации всех реагентов кроме одного берутся в большом избытке. Тогда в ходе кинетического эксперимента концентрации этих веществ могут считаться примерно постоянными и эффективный (или концентрационный) порядок по этим веществам будет равен нулю. В этом случае кинетическое уравнение упрощается. Например, из уравнения будет получено уравнение. Для определения величины 1.5.1. Метод подстановки (метод проб и ошибок). Этот метод уже был описан ранее, он заключается в подстановке экспериментальных данных в уравнения, и для расчета константы скорости. Если порядок выбран правильно, то значения константы для различных моментов времени (или различных начальных концентраций при определении концентрационного порядка) должны быть приблизительно постоянны. В графической разновидности этого метода строятся графики в координатах 1.5.2. Метод определения порядка по времени полупревращения (метод Раковского). Если прологарифмировать уравнение, то получим: Это уравнение представляет линейную зависимость в координатах 1.5.3. Дифференциальный метод Вант-Гоффа. Если прологарифмировать уравнение Построив график в координатах
|