Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теоремы об арифметических операциях над элементами сходящихся последовательностей.






 

♦ Теорема 9.3. Сумма (разность) сходящихся последовательностей и представляет собой сходящуюся последовательность, предел которой равен сумме (разности) пределов последовательностей и , то есть .

Доказательство. Пусть а и b – соответственно пределы последовательностей и . Тогда и , где и - бесконечно малые последовательности. Следовательно, . Последовательность – бесконечно малая, таким образом, последовательность сходится и имеет своим пределом число . ■

♦ Теорема 9.4. Произведение сходящихся последовательностей и представляет собой сходящуюся последовательность, предел которой равен произведению пределов и , то есть .

Доказательство. Пусть а и b – пределы последовательностей и . Тогда и , где и – бесконечно малые последовательности. Рассмотрим разность . Последовательность – бесконечно малая, тогда и последовательность также бесконечно малая, поэтому последовательность сходится и имеет своим пределом число . ■

 

♦ Лемма 9.1. Если последовательность сходится к отличному от нуля пределу b, то, начиная с некоторого номера, определено частное последовательностей и , которое представляет собой ограниченную последовательность.

Доказательство. Пусть , т.к. . Тогда при ,

Значит, начиная с , последовательность ограничена. ■

 

♦ Теорема 9.5. Частное двух сходящихся последовательностей и при условии, что , есть сходящаяся последовательность, предел которой равен частному пределов последовательностей и .

Доказательство. Пусть . По лемме при – ограниченная последовательность.

Рассмотрим при частное ; докажем, что – бесконечно малая.

Рассмотрим разность

.

Так как – ограниченная, а – бесконечно малая, то последовательность также бесконечно малая, значит, последовательность сходится и её предел . ■

 

J Пример 9.2. 1) Найти . При числитель и знаменатель стремятся к бесконечности и сразу применить теорему о пределе частного нельзя, так как в условии теоремы 9.5 предполагается существование конечных пределов. Преобразуем данную последовательность, разделив все члены дроби на . Затем, применяя теоремы о пределе частного и о пределе суммы, найдём:

.

Когда вырабатывается определённый навык, подробную запись можно сократить.

2) Найти . Разделим все члены дроби на и используем необходимые теоремы: .

3) Найти . Разделим все члены дроби на , получим: . J

При решении задач можно воспользоваться результатами приведённых примеров. Сделаем вывод: если старшие степени n в числителе и знаменателе равны, то ответ равен отношению коэффициентов при данных степенях; если старшая степень n находится в числителе, то ответ будет , если старшая степень – в знаменателе, то ответ будет 0.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал