![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 3 Полупроводниковые диоды
Полупроводниковым диодом называют электропреобразовательный прибор с одним или несколькими электрическими переходами и двумя выводами для подключения к внешней цепи. Принцип действия большинства диодов основан на использовании физических явлений в электрических переходах. Диоды классифицируются: по материалу (селеновые, германиевые, кремниевые, арсенид-галлиевые); структуре перехода (точечные, плоскостные); назначению (выпрямительные, импульсные, стабилитроны и т.д.); диапазону частот (низкочастотные, высокочастотные, сверхвысокочастотные диоды (СВЧ-диоды)); виду вольт-амперной характеристики и т.д.
Система обозначений полупроводниковых диодов. Для маркировки полупроводниковых диодов используется буквенно-цифровая система условных обозначений согласно ОСТ 11.336.919-81. Первый элемент – буква или цифра, характеризует используемый материал: Г(1) – германий (Ge); К(2) – кремний (Si); А(3) – галлий (Ga) и его соединения; И(4) – индий In и его соединения. Второй элемент – буква, характеризует функциональное назначение диода: Д – выпрямительный; В – варикап; И – туннельный и обращенный; С – стабилитрон и стабистор; Л – излучающий светодиод. Третий элемент – цифра, характеризует назначение диода и содержит информацию о специальных параметрах диода. Например, для диодов группы Д: 1 – выпрямительные маломощные (ток до 300 мА); 2 – выпрямительные средней мощности (ток до 10 А); 3 – диоды большой мощности (ток свыше 10 А); 4–9 – диоды импульсные с различным временем восстановления. Четвертый элемент (2–3 цифры) – порядковый номер разработки (для стабилитрона – напряжение стабилизации в десятых долях вольта). Пятый элемент – буква, характеризует группу диодов с различными параметрами. Условные графические обозначения полупроводниковых диодов на схемах электрических принципиальных представлены на рис. 3.5. Выводы диода называются катод и анод. Катод – вывод прибора, через который ток вытекает во внешнюю цепь. Анод – вывод прибора, через который ток втекает в прибор
из внешней цепи. Вольт-амперная характеристика, пробой и общие параметры диодов. Зависимость тока, протекающего через диод, от величины и полярности приложенного к его выводам внешнего напряжения называется ВАХ диода:
где
На рис. 3.6 изображены реальная ВАХ (сплошная линия) и теоретическая ВАХ (пунктирная линия). Из-за существенного различия значений прямого и обратного токов и напряжений прямые и обратные ветви ВАХ выполнены в различном масштабе. Прямая ветвь реальной ВАХ, как следует из (3.10), сдвинута в сторону больших значений прямых напряжений при Различают два основных вида пробоя: электрический пробой и тепловой. В свою очередь электрический пробой делится на лавинный и туннельный. Лавинный пробой характерен для диодов с широкими переходами, образованными областями с невысокой концентрацией легирующей примеси ( Туннельный пробой развивается в диодах с очень узкими переходами, образованными областями с высокой концентрацией легирующей примеси ( В планарных диодах (см. рис. 3.4) электрический пробой происходит на участке перехода, выходящем на поверхность полупроводниковой структуры, так называемый поверхностный пробой. Это обусловлено наличием на поверхности n-базы диода положительного объемного заряда, который приводит к уменьшению толщины перехода вблизи поверхности и соответствующему уменьшению напряжения пробоя. Тепловой пробой возникает вследствие перегрева электрического перехода протекающим через него обратным током при недостаточном теплоотводе. За счет термогенерации носителей в переходе возрастает обратный ток диода, и рост подводимой к диоду мощности
Диоды характеризуются рядом параметров, которые являются общими для всех типов диодов. К ним относятся: рабочий диапазон температур перехода максимально допустимый прямой ток максимально допустимое обратное напряжение прямая и обратная максимально допустимая мощность, рассеиваемая на диоде:
где прямое и обратное статическое сопротивление диода (сопротивление постоянному току):
прямое и обратное дифференциальное сопротивление (сопротивление переменному току):
Дифференциальное сопротивление диода значительно меньше статического. Величину Способность диода накапливать электрические заряды отражается его емкостными параметрами. Существует два механизма накопления зарядов, которые описываются двумя емкостными параметрами. Барьерная емкость отражает наличие объемного электрического заряда ионизированных атомов примеси в p-n-переходе, который можно рассматривать как плоский конденсатор. Расстояние между обкладками этого конденсатора определяется шириной p-n-перехода
где Диффузионная емкость отражает накопление электрического заряда неосновных неравновесных носителей в p- и n-областях при прямом включении перехода. Величина диффузионной емкости пропорциональна прямому току перехода:
где Кроме общих параметров диоды характеризуются специальными параметрами, присущими только данному типу диодов. Выпрямительные диоды предназначены для преобразования переменного тока с частотой от 50 до 20 000 Гц в пульсирующий ток одного направления и широко используются в источниках питания радиоэлектронной аппаратуры различного назначения. В качестве полупроводникового материала для таких диодов ранее использовали германий, в настоящее время – кремний и арсенид галлия. Принцип работы выпрямительных диодов основан на вентильном свойстве p-n-перехода. Выпрямительные диоды подразделяются на диоды малой, средней и большой мощности. Диоды малой мощности предназначены для выпрямления токов до 300 мА, средней и большой мощности – для выпрямления токов соответственно от 300 мА до 10 А и от 10 до 1000 А. Преимущества кремниевых диодов по сравнению с германиевыми: малые обратные токи; возможность использования при более высоких температурах окружающей среды и больших значениях обратных напряжений. Преимущество германиевых диодов – малое падение напряжения 0, 3¼ 0, 6 В при протекании прямого тока (по сравнению с 0, 8¼ 1, 2 В у кремниевых). В качестве выпрямительных диодов используют плоскостные, сплавные, диффузионные и эпитаксиальные диоды, выполненные на основе несимметричных p-n-переходов. Барьерная емкость перехода из-за большой площади велика и ее значение достигает десятков пикофарад. Германиевые диоды могут быть использованы при температурах не более 70¼ 80 °С, кремниевые – до 120¼ 150 °С, арсенид-галлиевые – до 240¼ 280 °С. Другим преимуществом диодов из арсенида галлия является значительно большая подвижность носителей, что позволяет их использовать на частотах до 100…500 кГц. Максимальное обратное напряжение маломощных низкочастотных выпрямительных диодов лежит в пределах от нескольких десятков до 1200 В. Для более высокого напряжения промышленностью выпускаются выпрямительные столбы, использующие несколько последовательно соединенных диодов в одном корпусе. Обратные токи не превышают 300 мкА для германиевых диодов и 10 мкА – для кремниевых. Мощные (силовые) диоды различаются по частотным свойствам и работают на частотах в диапазоне от десятков герц до десятков килогерц и изготавливаются преимущественно из кремния. Работа при больших прямых токах и высоких обратных напряжениях связана с выделением значительной мощности в p-n-переходе. Поэтому в установках с диодами средней и большой мощности используются охладители – радиаторы с воздушным и жидкостным охлаждением. При воздушном охлаждении тепло отводится с помощью радиатора. При этом охлаждение может быть естественным (за счет конвекции воздуха) или принудительным (с использованием обдува корпуса прибора и радиатора с помощью вентилятора). При жидкостном охлаждении в радиатор по специальным каналам пропускается теплоотводящая жидкость (вода, антифриз, трансформаторное масло, синтетические диэлектрические жидкости). К основным параметрам выпрямительных диодов относятся: – максимально допустимый прямой ток – прямое падение напряжения на диоде – максимально допустимое обратное напряжение – обратный ток при заданном обратном напряжении – диапазон рабочих температур окружающей среды; – коэффициент выпрямления – предельная частота выпрямления, соответствующая уменьшению коэффициента выпрямления в 2 раза. На рис. 3.8 показана схема двухполупериодного выпрямителя – типовая схема включения выпрямительных диодов. Данное название обусловлено тем, что ток через нагрузку протекает в течение обоих полупериодов входного напряжения. Схема состоит из понижающего трансформатора Т, диодного моста, в плечи которого включены четыре диода VD1 – VD4, и сглаживающего конденсатора С. Переменное напряжение подается в одну диагональ моста, а нагрузка подключена к другой. При действии положительной полуволны входного напряжения открыты диоды VD2, VD3, а при действии отрицательной полуволны – VD1, VD4. Форма входного, выходного напряжения и тока нагрузки в данной схеме показана на рис. 3.9. Конденсатор в данной схеме обеспечивает сглаживание пульсирующего напряжения на нагрузке за счет заряда от источника в течение части периода и разряда через нагрузку в течение промежутка времени, равного практически половине периода входного напряжения
Максимальное значение обратного напряжения, которое прикладывается к одному диоду при действии отрицательной полуволны в данной схеме, практически равно амплитуде входного напряжения:
Емкость диода слагается из емкости корпуса и емкости p-n-перехода ( Прямая ветвь ВАХ точечного диода практически не отличается от реальной ВАХ p-n-перехода, а обратная ветвь не имеет ярко выраженного участка насыщения, что объясняется процессами генерации носителей заряда в неоднородном поле точечного контакта, вызванной лавинным умножением. Импульсные диоды предназначены для работы в импульсных и цифровых устройствах. Обозначаются так же, как и выпрямительные, имеют малую длительность переходных процессов. От выпрямительных диодов отличаются малыми емкостями p-n-перехода (доли пикофарад) и характеризуются рядом параметров, определяющих переходные характеристики диода. Уменьшение емкостей достигается за счет уменьшения площади p-n-перехода, поэтому допустимые мощности рассеяния у них невелики (30¼ 40 мВт). При воздействии на диод коротких по времени прямоугольных импульсов напряжения или тока форма тока через диод или напряжения на нем будет отличаться от прямоугольной, что обусловлено инерционностью процессов накопления и рассасывания носителей в базе и перезарядом его барьерной емкости. При малых уровнях напряжения и тока длительность переходных процессов определяется барьерной емкостью, а при больших – диффузионной. На рис. 3.10 показаны переходные процессы в диоде при высоких уровнях напряжения и тока. При подаче на диод прямого напряжения ток устанавливается не сразу, так как с течением времени происходит накопление инжектированных неосновных носителей в базе и снижение ее сопротивления. Передний фронт импульса тока получается искаженным (см. рис. 3.10, а). Однако данный процесс оказывается гораздо короче, чем процессы при переключении диода с прямого напряжения на обратное, которые характеризуются временем обратного восстановления Для уменьшения Импульсные диоды характеризуются рядом специальных параметров: – общая емкость диода – максимальное импульсное прямое напряжение – максимально допустимый импульсный ток – время установления прямого напряжения
Для уменьшения В ДНЗ база изготавливается неравномерно легированной по длине. Концентрация примеси в базе по мере приближения к p-n-переходу уменьшается, поэтому неравномерной оказывается и концентрация основных носителей базы – электронов, если база имеет проводимость n-типа. За счет этого электроны диффундируют в сторону p-n-перехода, оставляя в глубине базы избыточный положительный заряд атомов донорной примеси, а вблизи перехода избыточный заряд электронов. Между этими зарядами возникает электрическое поле, направленное в сторону перехода. Под действием этого поля дырки, инжектированные в базу при прямом включении диода, концентрируются (накапливаются) в базе у границы перехода. При переключении диода с прямого на обратное направление эти дырки под действием поля внутри перехода быстро уходят из базы в эмиттер, и время восстановления обратного сопротивления уменьшается. Для изготовления таких диодов применяется меза- и эпитаксиальная технология. Полупроводниковый стабилитрон – полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне, и предназначенный для стабилизации напряжения. Принцип действия стабилитронов основан на использовании электрического вида пробоя p-n-перехода при обратном смещении. В качестве стабилитронов используются плоскостные кремниевые диоды.
![]() ![]() ![]() ![]() ![]() ![]()
Напряжение стабилизации
Величина обратного напряжения, при котором начинает развиваться электрический пробой, в значительной степени зависит от удельного сопротивления исходного материала, определяемого концентрацией примеси. В стабилитронах с напряжением стабилизации менее 5 В преобладает туннельный пробой, от 5 до 7 В наблюдаются оба вида электрического пробоя – туннельный и лавинный, а выше 7 В преобладает лавинный пробой. При изменении температуры напряжение стабилизации Основными параметрами стабилитронов являются: – напряжение стабилизации – минимальный – температурный коэффициент напряжения стабилизации
– дифференциальное сопротивление стабилитрона – статическое сопротивление Полупроводниковые диоды, предназначенные для стабилизации напряжений менее 1 В с использованием прямой ветви ВАХ, называются стабисторами. Для изготовления стабисторов используется кремний с высокой концентрацией примеси либо селен. Устройство, предназначенное для стабилизации постоянного напряжения, в котором используется стабилитрон, называется параметрическим стабилизатором напряжения, поскольку его характеристики полностью определяются параметрами стабилитрона. Принципиальная схема такого стабилизатора представлена на рис. 3.12. Нагрузка подключена параллельно стабилитрону, при этом напряжение на ней остается постоянным с определенной степенью точности. Ток стабилитрона, который задается гасящим или балластным резистором
где Варикап – полупроводниковый диод, действие которого основано на использовании зависимости емкости перехода от обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью. Они делятся на подстроечные, или варикапы, и умножительные, или варакторы. Варикапы используются для изменения резонансной частоты колебательных контуров. Варакторы применяются для умножения частоты. График зависимости емкости варикапа от обратного напряжения, которая описывается выражением (3.14), показан на рис. 3.13. Основными специальными параметрами варикапов являются:
– коэффициент перекрытия по емкости – сопротивление потерь – добротность – температурный коэффициент емкости Схема включения варикапа в колебательный контур показана на рис. 3.14. Обратное напряжение подается на варикап через высокоомный резистор Кроме рассмотренных диодов выпускаются туннельные диоды, диоды Ганна, лавинно-пролетные диоды, работающие в диапазоне сверхвысоких частот (0, 3…300 ГГц), а также фото- и излучательные диоды, используемые в фотоэлектрических и оптоэлектронных приборах и в качестве светоиндикаторных устройств.
|