![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 4. Биполярные транзисторы
Биполярный транзистор – полупроводниковый прибор, образованный двумя последовательно включенными взаимодействующими p-n-переходами и содержащий три или более вывода, усилительные свойства которого обусловлены явлениями инжекции и экстракции носителей заряда. Процессы усиления в БТ объясняются возможностью управления большим током в выходной цепи (коллектор или эмиттер) при небольших изменениях напряжения или тока во входной цепи (эмиттер- база). В зависимости от порядка чередования областей полупроводника, различают транзисторы а) р-n-р-типа и б) n-р-n-типа (рис.4.1.)
а) б) Рис.4.1. Отличие между ними заключается в различной полярности источников внешних напряжений и в направлении протекания токов через электроды при одинаковом принципе работы. Эмиттером называется одна из крайних областей, которую легируют сильнее, что позволяет использовать ее в режиме инжекции. Промежуточную область называют базой а другую крайнюю область – коллектором. В область коллектора производится экстракция носителей заряда из базовой области. Электронно-дырочный переход между эмиттерной и базовой областями называют эмиттерным, а между коллекторной и базовой – коллекторным. В зависимости от напряжения на переходах возможны следующие режимы работы транзистора: активный режим –на эмиттерный переход подается прямое смещение, на коллекторный обратное (запирающее); режим отсечки – на обоих переходах обратное напряжение; режим насыщения – на обоих переходах прямое напряжение; инверсный режим – обратный по отношение к активному, то есть коллекторный переход смещен в прямом направлении, эмиттерный – в обратном. В зависимости от того, какой из выводов транзистора является общим для входной и выходной цепи, различают три схемы включения транзистора: с общей базой (ОБ), с общим эмиттером (ОЭ) и с общим коллектором (ОК). На рис. 4.2. показаны полярности внешних источников напряжения и направления токов транзистора, соответствующие активному режиму работы, для трех схем включения. а б в Рис. 4.2. Схемы включения биполярного транзистора (ОБ, ОЭ, ОК)
Основные функции биполярного транзистора могут быть реализованы только в активном режиме, поэтому ниже рассмотрим процессы формирования токов и управления ими в активном режиме для схемы с общей базой. С ростом прямого смещения Uэб на эмиттерном переходе происходит уменьшение его потенциального барьера, что вызывает инжекцию дырок из эмиттера в базу и электронов из базы в эмиттер.
Рис.4.3. Внутренняя структура биполярного транзистора
При этом, как и ранее в полупроводниковых диодах, используется несимметричный р-п переход, при котором концентрация примеси в эмиттере много больше концентрации примеси в базе (концентрация основных носителей эмиттера много больше концентрации основных носителей базы). Это приводит к тому что инжекция дырок из эмиттера в базу преобладает над инжекцией электронов из базы в эмиттер. Ток инжекции имеет две составляющие: дырочную Iэp и электронную Iэn. Процесс инжекции характеризуется коэффициентом инжекции (эффективностью эмиттерного перехода) В результате инжекции происходит диффузия дырок через базу к коллекторному переходу. Этот процесс усиливается тем, что дырки, подошедшие к обратносмещенному коллекторному переходу, попадают в его ускоряющее поле Uкб и экстрагируют в коллектор, создавая управляемую составляющую тока коллектора Iк упр.. По мере продвижения по базе незначительная часть дырок рекомбинирует с собственными носителями базы – электронами, создавая рекомбинационную составляющую тока базы Iб рек. Коэффициент переноса неосновных носителей через базу характеризуется e = Iкp/Iэp, где Iкp – ток дырок, дошедших до коллекторного перехода в области базы. При экстракции может также происходить ударная ионизация атомов полупроводника и лавинное умножение носителей заряда в коллекторном переходе, которое оценивается коэффициентом лавинного умножения М = Iк упр/Iкp. Произведение частичных коэффициентов передачи позволяет определить сквозной коэффициент передачи по току в схеме с ОБ (статический коэффициент передачи тока эмиттера) как Значения параметра Можно заметить, что в общем случае при малой ширине базы поле КП полностью формирует ток коллектора, то есть напряжение на коллекторном переходе при этом может отсутствовать. Однако в реальной схеме включения БТ напряжение Uкэ всегда имеется, что обусловлено включением нагрузки и необходимостью создания выходного тока в цепи коллектора. Следовательно, кроме управляемого тока коллектора
Обратный неуправляемый ток сильно зависит от температуры, поэтому Величина Для БТ можно записать так называемое внутреннее уравнение транзистора, то есть выражение, связывающее токи всех трех выводов БТ:
Выражение, связывающее выходной
Параметр Коэффициент В активном режиме работы токи коллектора и эмиттера БТ практически равны, а незначительный ток базы равен их разности. Это приводит к тому, что в схеме с ОБ отсутствует усиление по току ( Усиление входного сигнала по напряжению и мощности возможно получить в обеих рассмотренных схемах включения (ОБ и ОЭ). Поскольку ток коллектора формируется без участия Uк, величина коллекторного тока практически не зависит от напряжения на коллекторном переходе, поэтому дифференциальное сопротивление коллекторного перехода В связи с этим в цепь коллектора можно включать нагрузку с большим сопротивлением Можно увидеть, что изменение входного (эмиттерного) тока на величину
Аналогичные выводы можно получить и для схемы с ОЭ, которая является универсальной (то есть усиливает и по току и по напряжению и по мощности). Для схемы включения с ОК можно определить соотношение выходного тока эмиттера и входного тока базы как Кi =Iэ/Iб=(Iк+ Iб)/Iб= (1+ Из схемы рис., эквивалентная схема которой соответствует схеме с ОК, можно увидеть, что выходное напряжении всегда меньше входного, то есть схема включения БТ с ОК не позволяет получить усиление по напряжению, но, очевидно, позволяет получить усиление по мощности, так как Кi= (1+ Статические ВАХ отражают зависимости между постоянными входными и выходными токами и напряжениями транзистора. Для любой схемы включения транзистора можно получить четыре семейства статических ВАХ: входные На рис. 4.3. и рис 4.4.. приведены графики семейств статических ВАХ транзистора, имеющего p-n-p-структуру, для включения с ОБ. Рис 4.4. Входные и выходные статические ВАХ p-n-p-транзистора с ОБ.
Входные характеристики представляют собой известные характеристики прямосмещенного р-п перехода. Выходные характеристики позволяют оценить поведение транзистора в различных режимах работы в соответствии с определением режимов. Рис.4.5. Характеристики прямой передачи и обратной связи БТ с ОБ
Характеристики прямой передачи БТ являются линейными в рабочей области входных токов в соответствии с уравнением Поведение характеристик обратной связи объясняется эффектом модуляции ширины базы в области небольших значений U кб.
Для схемы включения БТ с ОЭ поведение входных характеристик (рис. 4.6.) объясняется так же как и для схемы с ОБ. На выходных характеристиках требует пояснения отличное от схемы с ОБ расположение области режима насыщения Рис.4.6. Входные и выходные характеристики БТ с ОЭ
В частности в схеме с ОЭ насыщение БТ наступает при выполнении условия Uкэ < Uбэ. В этом случае полярность напряжения на коллекторном переходе соответствует прямому смещению независимо от типа транзистора (р-п-р или п-р-п.). На рис. также показана возможность определения параметров транзистора через приращения токов и напряжений в заданной рабочей точке БТ.
Рис.4.7. Характеристики прямой передачи и обратной связи БТ с ОЭ
|