Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Гаусса






Методы решения систем линейных алгебраических уравнений можно разделить на точные и приближенные.

Метод решения задачи относят к классу точных, если в предположении отсутствия округлений с его помощью можно найти решение в результате конечного числа арифметических и логических операций.

Метод Гаусса относится к точным методам решения систем линейных уравнений вида , где Х – вектор-столбец неизвестных , - матрица коэффициентов, В – вектор-столбец свободных членов . Как известно из курса линейной алгебры, метод Гаусса заключается в приведении матрицы системы к треугольному виду (прямой ход метода) и затем в последовательном нахождении неизвестных (обратный ход) .

Прямой ход метода Гаусса заключается в последовательном исключении неизвестных из уравнений системы. Обозначим через - коэффициенты системы, а через - правые части уравнений, полученные на k -м шаге (). Преобразование коэффициентов осуществляется следующим образом:

.

В результате получаем систему, характеризуемую треугольной матрицей, на главной диагонали которой стоят единицы.

Полученная система уравнений имеет вид:

Нахождение неизвестных при обратном ходе метода осуществляется по формуле:

.

На практике при рассмотрении метода Гаусса для того, чтобы избежать деления на нуль, применяют модифицированный метод Гаусса с выбором ведущего элемента. При этом при прямом ходе метода Гаусса перед началом каждого шага переставляют строки таким образом, чтобы первый ненулевой элемент верхней строки был наибольшим по абсолютной величине в своем столбце.

Одним из преимуществ применения метода Гаусса является то, что системы с одинаковой левой, но различными правыми частями можно решать одновременно. Для этого прямой ход метода применяется к матрице .

Метод Гаусса можно применять для нахождения определителя матрицы системы. В этом случае используется только прямой ход метода, и определитель матрицы будет находиться по формуле:

,

где - сумма индексов переставлявшихся строк.

для нахождения обратной матрицы прямой ход метода Гаусса применяется к матрице , где А – исходная матрица, Е – единичная матрица. Преобразованиями, аналогичными указанным выше, ее можно привести к виду .

Основным недостатком метода Гаусса является большое число выполняемых в процессе решения арифметических операций - .

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал