Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод Гаусса
Методы решения систем линейных алгебраических уравнений можно разделить на точные и приближенные. Метод решения задачи относят к классу точных, если в предположении отсутствия округлений с его помощью можно найти решение в результате конечного числа арифметических и логических операций. Метод Гаусса относится к точным методам решения систем линейных уравнений вида , где Х – вектор-столбец неизвестных , - матрица коэффициентов, В – вектор-столбец свободных членов . Как известно из курса линейной алгебры, метод Гаусса заключается в приведении матрицы системы к треугольному виду (прямой ход метода) и затем в последовательном нахождении неизвестных (обратный ход) . Прямой ход метода Гаусса заключается в последовательном исключении неизвестных из уравнений системы. Обозначим через - коэффициенты системы, а через - правые части уравнений, полученные на k -м шаге (). Преобразование коэффициентов осуществляется следующим образом: . В результате получаем систему, характеризуемую треугольной матрицей, на главной диагонали которой стоят единицы. Полученная система уравнений имеет вид: Нахождение неизвестных при обратном ходе метода осуществляется по формуле: . На практике при рассмотрении метода Гаусса для того, чтобы избежать деления на нуль, применяют модифицированный метод Гаусса с выбором ведущего элемента. При этом при прямом ходе метода Гаусса перед началом каждого шага переставляют строки таким образом, чтобы первый ненулевой элемент верхней строки был наибольшим по абсолютной величине в своем столбце. Одним из преимуществ применения метода Гаусса является то, что системы с одинаковой левой, но различными правыми частями можно решать одновременно. Для этого прямой ход метода применяется к матрице . Метод Гаусса можно применять для нахождения определителя матрицы системы. В этом случае используется только прямой ход метода, и определитель матрицы будет находиться по формуле: , где - сумма индексов переставлявшихся строк. для нахождения обратной матрицы прямой ход метода Гаусса применяется к матрице , где А – исходная матрица, Е – единичная матрица. Преобразованиями, аналогичными указанным выше, ее можно привести к виду . Основным недостатком метода Гаусса является большое число выполняемых в процессе решения арифметических операций - .
|