Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
МногочленыЖегалкина
Согласно сформулированным утверждениям, можно говорить, что система булевых функций полна. Тогда любую булеву функцию можно представить в виде многочлена от своих переменных и такой многочлен называется многочленом Жегалкина. Многочленом Жегалкина называется многочлен, являющийся суммой константы и различных одночленов, в которые каждая из переменных входит не выше, чем в первой степени. Многочлен Жегалкина константы равен самой же константе; многочлен Жегалкина булевой функции одной переменной
Многочлен Жегалкина булевой функции трех переменных
и т. д. Коэффициенты Теорема 3(Жегалкина): Каждая булева функция Сформулируем алгоритм построения многочлена Жегалкина. Выше былоуказано, что любую функцию, отличную от константы 0, можно представить в виде СДНФ. Если сравним таблицы истинности дизъюнкции и суммы по модулю два, видим, что они отличаются только последней строкой, т.е. на наборе 11. Так как в СДНФ на каждом наборе только одна конъюнкция равна 1, то все дизъюнкции можно заменить суммами по модулю два. Кроме того, известно, что 1. Находим множество тех двоичных наборов, на которых функция принимает значение 1. 2. Составляем СДНФ. 3. В СДНФ каждый знак дизъюнкции меняем на знак суммы Жегалкина. 4. Упрощаем, если можно, полученное выражение, используя тождество 5. В полученной формуле каждое отрицание 6. Раскрываем скобки в полученной формуле, содержащей только функции 7. Приводим подобные члены, используя тождество Используя метод неопределенных коэффициентов, получаем второй алгоритм определения многочлена Жегалкина: 1. Составляем систему линейных уравнений относительно Многочлен Жегалкина называется нелинейным, если он содержит конъюнкции переменных, а если он не содержит конъюнкции переменных, то он называется линейным. Функция Из определения многочлена Жегалкина следует, что для любой булевой функции коэффициенты при переменных
…
На этом основан алгоритм определения линейности(или нелинейности) булевой функции. 1. По таблицам истинности булевой функции 2. Выписываем многочлен Если таблицы истинности совпадают, то функция
|