Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Позиционные задачи на пересечение поверхности с прямой линией и плоскостью
В общем случае пересечения поверхности с плоскостью является кривая линия. Рассмотрим конические сечения фронтально проецирующимися плоскостями и горизонтальной плоскостью уровня (рис. 6.7) Обозначим угол наклона образующей к оси конуса a - а угол наклона следа плоскости - j. В зависимости от угла наклона плоскости линией сечения может быть окружность, эллипс, парабола, гипербола. Если: j = 90°, линия сечения - окружность, j > a - эллипс, j = a - парабола, j < a - гипербола. Если секущая плоскость проходит через вершину конуса, то сечением является треугольник. Задача: Построить линию сечения конуса фронтально проецирующей плоскостью S (рис. 6.8). Решение: Линией сечения в данном случае будет неполны эллипс т.к. угол наклона плоскости S к оси конуса больше угла наклона образующей. Фронтальная проекция линии сечения совпадает со следом плоскости, т.к. секущая плоскость является фронтально проецирующей. Определим горизонтальную проекцию сечения. Первоначально отметим опорные точки – точка 1 на очерковой образующей является высшей точкой сечения, точки 2 и 3 на основании конуса – низшие точки. Ряд промежуточных точек 4, 5, 6, 7 определяем с помощью параллелей конуса, проведённых через эти точки. Точки 8, 9 определены через образующую конуса. Полученные точки плавно соединяем с учётом видимости. Задача: Определить точки пересечения прямой а с конусом (рис. 6.9). Решение: Для решения задачи выгоднее всего использовать вспомогательную плоскость, проходящую через вершину конуса. Для этого дополним прямую а до плоскости прямой b, пересекающейся с ней в точке 1 (рис. 6.9). Определим горизонтальный след вспомогательной плоскости S(а Ç b). Для этого найдём следы прямых а и b – М и М 1. Отметим точки пересечения основания конуса с горизонтальным следом S1 – точки А и В. Определилась линия сечения конуса со вспомогательной плоскостью – это треугольник АВS. На пересечении линии сечения A1B1S1 и проекции прямой а1 находим искомые точки K1 и L1, по линиям связи - K2 и L2. Затем определяем видимость прямой относительно точек пересечения.
|