Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вопрос 40 Графы и их свойства
Графические представления - удобный способ иллюстрации содержания различных понятий, относящихся к другим способам формализованных представлений. Мощным и наиболее исследованным классом объектов, относящихся к графическим представлениям, являются так называемые графы, изучаемые в теории графов. Графическое представление в узком смысле – это описание исследуемой системы, процесса, явления средствами теории графов в виде совокупности двух классов объектов: вершин и соединяющих их линий – ребер или дуг. Графы и их составляющие характеризуются определенными свойствами и набором допустимых преобразований (операций) над ними. Графом G называется совокупность двух множеств: вершин V и ребер E, между элементами которых определено отношение инцидентности – каждое ребро e Ребро, соединяющее две вершины, может иметь направление от одной вершины к другой; в этом случае оно называется направленным, или ориентированным, или дугой и изображается стрелкой, направленной от вершины, называемой началом, к вершине, именуемой концом. Граф, содержащий направленные ребра (дуги) с началом v Ребра, инцидентные одной и той же паре вершин, называются параллельными, или кратными. Граф, содержащий кратные ребра, именуется мультиграфом. Ребро, концевые вершины которого совпадают, называется петлей. Граф называется конечным, если множество его элементов (вершин и ребер) конечно, и пустым, если его множество вершин V (а значит и ребер E) пусто. Граф без петель и кратных ребер именуется полным, если каждая пара вершин соединена ребром. Простой граф – граф, не имеющий петель или кратных ребер Дополнением графа G называется граф Каждому неориентированному графу канонически соответствует ориентированный граф с тем же множеством вершин, в котором каждое ребро заменено двумя ориентированными ребрами, инцидентными тем же вершинам и имеющими противоположные направления. Локальной степенью (или просто степенью) вершины v
Отсюда следует, что в н – графе число вершин нечетной степени четно. Граф, у которого вершины имеют одну и ту же валентность r называют правильным или r-валентным. Вершина изолирована, если её валентность (степень)=0. Теорема. Во всяком графе с n вершинами всегда сущ-ет по меньшей мере 2 с одинаковыми степенями. Для вершин орграфа определяются две локальные степени: · · В орграфе суммы степеней всех вершин
Графы
|