Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Ромберга






Пусть требуется вычислить определенный интеграл на интервале [a; b].

Далеко не всегда задача может быть решена аналитически. В частности, численное решение требуется в том случае, когда подынтегральная функция задана таблично. Для численного интегрирования подынтегральную функцию аппроксимируют какой-либо более простой функцией, интеграл от которой может быть вычислен. Обычно в качестве аппроксимирующей функции используют полином. В случае полинома нулевой степени метод численного интегрирования называют методом прямоугольников, в случае полинома первой степени – методом трапеций, в случае полинома второй степени – методом Симпсона. Все эти методы являются частными случаями квадратурных формул Ньютона-Котеса.

Итак, в методе трапеций подынтегральную функцию аппроксимируют полиномом первой степени, то есть прямой линией. Это значит, что вместо площади криволинейной трапеции мы будем искать площадь прямоугольной трапеции. Приближенное значение интеграла равно

Погрешность этой формулы равна .

Обозначим , где . Смысл введенного обозначения станет ясен несколько позже.

Оценку значения интеграла можно сделать более точной, если разбить интервал на n частей и применить формулу трапеций для каждого такого интервала

.

Если разбить интервал на две части, то есть уменьшит шаг в два раза , то оценка для величины интеграла будет иметь вид

В данном случае суммирование включает только один элемент. Обратите внимание, в новую оценку вошла старая оценка. Нам потребовалось определять значение функции только в новых узлах.

Если имеется 2n подынтервалов, то

Если n=0, то

Если n=1, то

Если n=2, то

Вообще, справедливо рекуррентное соотношение

Полученное соотношение называют рекурсивной формулой трапеций и часто применяют для вычисления определенных интегралов. Преимущество этой формулы состоит в том, что при увеличении числа подынтервалов функцию нужно вычислять только во вновь добавленных точках. К сожалению, с помощью этой формулы нельзя получить сколь угодно точное значение интеграла. Во-первых, при увеличении числа разбиений объем вычислений стремительно возрастает; во-вторых, на каждом шаге накапливается ошибка округлений. Для дальнейшего уточнения значения интеграла можно сделать следующий шаг – экстраполировать полученную последовательность значений на случай бесконечного числа точек или что то же самое, на случай нулевого шага. Такой подход называется методом Ромберга.

Метод Ромберга заключается в том, что полученные оценки значения интеграла экстраполируют на случай бесконечного числа разбиений (величины шага равной нулю) по рекуррентной формуле

То есть строится следующий треугольник

R (1, 1)

R (2, 1) R (2, 2)

R (3, 1) R (3, 2) R (3, 3)

R (4, 1) R (4, 2) R (4, 3) R (4, 4)

R (5, 1) R (5, 2) R (5, 3) R (5, 4) R (5, 5),

в котором первый столбец состоит из значений интеграла, полученных при последовательном удвоении числа интервалов. Второй столбец – результат уточнения значений первого столбца по рекуррентной формуле. Третий столбец – уточненные значения интеграла на основе второго столбца и т.д.

Формула может быть получена различными способами. Можно, например, воспользоваться методом Невиля. Пусть имеется набор точек . Обозначим полином нулевой степени, проходящий через i -ю точку. Обозначим полином первой степени, проходящий через точки i и i +1. Совершенно аналогично будет означать полином n –1 степени, проходящий через все n точек. Легко убедиться, что

В нашем случае . В качестве выступают . Мы хотим получить значение интеграла в пределе , поэтому .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал