![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение дифференциальных уравнений второго порядка
В качестве примера решим задачу о гармоническом осцилляторе, для которого известно аналитическое решение, и легко может быть оценена точность вычислений. Дифференциальное уравнение второго порядка преобразуем к системе из двух дифференциальных уравнений первого порядка Пусть декремент затухания Пусть циклическая частота Зададим начальные условия y0 соответствует начальной координате, а y1 – начальной скорости. Зададим теперь матрицу D. С учетом того, что искомая величина соответствует нулевому элементу массива y, ее первая производная – первому, а вторая – второму, имеем Представим результаты расчета на графике и сравним их с аналитическим решением
Для контроля точности вычислений нарисуем фазовую траекторию (зависимость смещения от скорости). Для гармонического осциллятора фазовая траектория должна иметь вид эллипса. Примечание: Mathcad имеет еще две функции для решения задачи Коши. Это функции Rkadapt и Bulstoer. Эти функции имеют те же самые аргументы и возвращают решения в такой же форме, что и функция rkfixed. Первая из этих функций использует метод Рунге–Кутты с переменным шагом, что позволяет повысить точность вычислений и сократить их объем, если искомое решение имеет области, где ее значения меняются быстро, и области плавного изменения. Функция Rkadapt будет варьировать величину шага в зависимости от скорости изменения решения. Функция Bulstoer реализует иной численный метод – метод Булирша–Штёра. Ее следует применять, если известно, что решение является гладкой функцией.
|