Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Введение. Пусть необходимо найти решение уравнения






Пусть необходимо найти решение уравнения

с начальным условием . Такая задача называется задачей Коши. Разложим искомую функцию в ряд вблизи точки и ограничимся первыми двумя членами разложения . Учтя уравнение и обозначив , получаем Эту формулу можно применять многократно, находя значения функции во все новых и новых точках.

Такой метод решения обыкновенных дифференциальных уравнений называется методом Эйлера. Геометрически метод Эйлера означает, что на каждом шаге мы аппроксимируем решение (интегральную кривую) отрезком касательной, проведенной к графику решения в начале интервала. Точность метода невелика и имеет порядок h. Говорят, что метод Эйлера – метод первого порядка, то есть его точность растет линейно с уменьшением шага h.

Существуют различные модификации метода Эйлера, позволяющие увеличить его точность. Все они основаны на том, что производную, вычисленную в начале интервала, заменяют на среднее значение производной на данном интервале. Среднее значение производной можно получить (конечно же только приближенно) различными способами. Можно, например, оценить значение производной в середине интервала и использовать его для аппроксимации решения на всем интервале

Можно также оценить среднее значение производной на интервале

Такие модификации метода Эйлера имеет уже точность второго порядка.

Оценку значения производной можно улучшить, увеличивая число вспомогательных шагов. На практике наиболее распространенным методом решения обыкновенных дифференциальных уравнений является метод Рунге-Кутты четвертого порядка. Для оценки значения производной в этом методе используется четыре вспомогательных шага. Формулы метода Рунге-Кутты следующие

Перечисленные методы можно применять и для решения систем дифференциальных уравнений. Поскольку многие дифференциальные уравнения высших порядков могут быть сведены заменой переменных к системе дифференциальных уравнений первого порядка, рассмотренные методы могут быть использованы и для решения дифференциальных уравнений порядка выше первого.

Еще один тип задач, часто встречающихся на практике, – краевые задачи. Пусть имеется дифференциальное уравнение второго порядка . Решение уравнения требуется найти на интервале , причем известно, что Понятно, что произвольный интервал заменой переменных может быть сведен к единичному. Для решения краевой задачи обычно применяют метод стрельб. Пусть где k – некоторый параметр. Для некоторого пробного значения k может быть решена задача Коши, например, методом Рунге-Кутты. Полученное решение будет зависеть от значения параметра . Мы хотим найти такое значение параметра, чтобы выполнялось условие . Фактически мы свели исходную задачу к задаче решения трансцендентного уравнения с таблично заданной функцией. Если найдены такие значения параметра k 1 и k 2, что , то дальнейшее уточнение значения параметра можно проводить методом деления отрезка пополам.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал