Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Численное дифференцирование и интегрирование. К численному дифференцированию приходиться прибегать в том случае, когда функция f(x), для которой нужно найти производную
К численному дифференцированию приходиться прибегать в том случае, когда функция f(x), для которой нужно найти производную, задана таблично или же функциональная зависимость f(x) имеет сложное аналитическое выражение. В этих случаях функция разбивается одномсерной сеткой и используются приближенные формулы. Формула первой производной для двух узлов: (4.4.1), , h-шаг изменения аргумента. Формула первой производной по трем узлам для второй точки: (4.4.2), где Формула второй производной для трех узлов: (4.4.3)
Численное интегрирование применяют в случаях когда нельзя найти формулу первообразной в элементарных функциях. Общий метод численного интегрирования сводится к замене интегрируемой площади подынтегральной функции на элементарные площади, получаемые разбиением с заданным шагом , где – квадратурная сумма, -коэффициенты, -узлы квадратурной функции. Формула прямоугольников. (4.4.4), где (k- число разбиений).
Иллюстрация метода прямоугольников.
Формула трапеций. (4.4.5) где h-шаг разбиения
|