Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Степенной метод.






 

Пусть требуется найти максимальное по абсолютной величине собственное значение матрицы , причем известно, что искомое собственное значение простое (кратности единица). Предположим, что – матрица простой структуры и .

Заметим, что при умножении матрицы на ее собственный вектор последний преобразуется в коллинеарный вектор , причем длина полученного при этом вектора изменяется пропорционально соответствующему собственному значению . Данное свойство собственных векторов лежит в основе степенного метода. Для матриц простой структуры система собственных векторов образует базис в пространстве , и любой вектор этого пространства может быть представлен в виде линейной комбинации векторов данного базиса.

Из последнего равенства следует, что в разложении по собственным векторам при умножении матрицы на вектор наибольший рост (наименьшее убывание) испытывает составляющая, соответствующая максимальному собственному значению. Рассмотрим последовательность

. (4.6)

Поскольку то при последовательность сходится к собственному вектору . Компоненты вектора , соответствующие другим собственным значениям стремятся к нулю со скоростью геометрической прогрессии. Очевидно, что скорость сходимости последовательности определяется отношением – знаменателем геометрической прогрессии самой медленной из компонент .

Заметим, что асимптотика определяется также значением , которое в пределе стремиться к нулю или бесконечности, в зависимости от величины . В силу этого для практического использования итерационного процесса (4.6) необходима нормировка промежуточных результатов. В качестве нормировочного коэффициента наиболее походящий выбор – максимальная по абсолютной величине координата вектора :

. (4.7)

 

Использование итерационной процедуры (4.7) позволяет определить как собственный вектор, соответствующий максимальному собственному значению, так и величину данного собственного значения

, (4.8)

. (4.9)

 

После того как наибольшее собственное значение определено, данный подход может быть использован для вычисление других собственных значений и собственных векторов. Например, для вычисления наименьшего собственного значения и соответствующего ему собственного вектора процедуру (4.7)–(4.9) следует применить к матрице . В соответствии со свойством сдвига собственных значений, собственные значения матриц и связаны соотношением . В илу этого наибольшее по абсолютной величине собственное матрицы : .

Использование свойства сдвига собственных значений может оказаться очень полезным для ускорения сходимости степенного метода, когда собственные значения матрицы и близки по абсолютной величине.

К недостаткам степенного метода следует отнести тот факт, что он не может быть использован в случае, когда матрица имеет равные по модулю собственные значения. Итерационный процесс (4.7) в этом случае не сходится.

 

Упражнения.

1. Возможно ли с помощью степенного метода определить собственное значение действительной матрицы, если оно является комплексным?

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал