Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Погрешности основных арифметических операций
Правило 1: Пусть и — приближенные значения чисел и , тогда абсолютная погрешность алгебраической суммы (суммы или разности) не превосходит суммы абсолютных погрешностей слагаемых, т.е.[1]: Правило 2: Пусть и — ненулевые числа одного знака, тогда: 1. ; 2. . Здесь , а [1]. Первое из равенств означает, что при суммировании чисел одного знака не происходит потери точности, если оценивать точность в относительных единицах. Совсем иначе обстоит дело при вычитании чисел одного знака. Здесь граница относительной ошибки возрастает в раз и возможна существенная потеря точности. Если числа и близки настолько, что , то и не исключена полная или почти полная потеря точности. Когда это происходит, говорят о катастрофической потери точности. При построении численного метода решения задачи следует избегать вычитания близких чисел одного знака. Если же такое вычитание неизбежно, то следует вычислять аргументы с повышенной точностью, учитывая ее потерю примерно раз. Правило 3: Для относительных погрешностей произведения и частного приближенных чисел верны оценки: 1. ; 2. ; в последней из которых [1]. Приведенные равенства чаще всего используют для практической оценки погрешности. Выполнение арифметических операций над приближенными числами, как правило, сопровождается потерей точности. Единственная операция, при которой потеря не происходит, — это сложение чисел одного знака. Наибольшая потеря точности может произойти при вычитании близких чисел одного знака.
|