Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Обратная задача теории погрешностей и ее решение методом равных влияний






Обратная задача теории погрешностей состоит в том, чтобы определить с какой точностью необходимо задавать значения аргументов функции , чтобы ее погрешность не превосходила заданной величины ? Эта задача математически не определена, так как заданную погрешность можно обеспечить при любом наборе предельных абсолютных погрешностей аргументов удовлетворяющих условию:

Простейшее решение обратной задачи дает принцип равных влияний, согласно которому вклады всех аргументов в формирование абсолютной погрешности функции равны:

Отсюда

, где

Иногда при решении обратной задачи по принципу равных влияний абсолютные погрешности отдельных аргументов оказываются настолько малыми, что вычислить или измерить эти величины с соответствующей точностью невозможно. В таком случае отступают от принципа равных влияний, чтобы увеличение погрешности одних переменных компенсировать уменьшением погрешности других.(Андреев-9)



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал