Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вопрос 5. Теорема о существовании корня нелинейного уравнения. Методы отделения корней. Метод хорд.
1. Постановка задачи. Пусть имеется уравнение вида Решить уравнение - значит найти все его корни, то есть те значения x, которые обращают уравнение в тождество, или доказать, что корней нет. Если алгебраическое или трансцендентное уравнение достаточно сложно, то довольно редко удается точно найти его корни. Кроме того, в некоторых случаях уравнение может содержать коэффициенты, известные лишь приблизительно, поэтому сама задача о точном нахождении корней теряет смысл. В таких случаях применяют численные (приближенные) методы решения. Поставим задачу найти такое приближенное значение корня xпр, которое мало отличается от точного значения корня x *, так что выполняется неравенство │ x* – xпр │ < e, где e (эпсилон) – малая положительная величина – допустимая ошибка, которую мы можем заранее задать по своему усмотрению. Если корень найден с точностью e, то принято писать x * = xпр ± e. Будем предполагать, что уравнение (1) имеет лишь изолированные корни, т.е. для каждого корня существует окрестность, не содержащая других корней этого уравнения.
2. Этапы приближенного решения нелинейных уравнений. Приближенное решение уравнения состоит из двух этапов: Отделение корней, то есть нахождение интервалов из области определения функции f (x), в каждом из которых содержится только один корень уравнения (1). Уточнение корней до заданной точности. Отделение корней можно проводить графически и аналитически. Рис. 1. Графическое отделение корней (1-ый способ). , (2) где и - более простые функции, чем . Абсциссы точек пересечения графиков функций и дают корни уравнения (2), а значит и исходного уравнения (1) (рис.2). Аналитическое отделение корней основано на следующих теоремах. Теорема 1. Если непрерывная функция принимает на концах отрезка значения разных знаков, т.е. , то на этом отрезке содержится по крайней мере один корень уравнения (1) (рис. 5). Теорема 2. Если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, а производная сохраняет знак внутри отрезка , то внутри отрезка существует единственный корень уравнения f (x) = 0 (рис. 6). Рис. 6. Существование единственного корня на отрезке. Уточнение корней до заданной точности заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Наиболее распространенными являются метод деления отрезка пополам, метод касательных (Ньютона), метод секущих (хорд). 3. Уточнение корней методом хорд. Пусть на отрезке функция непрерывна, принимает на концах отрезка значение разных знаков, а производная сохраняет знак. В зависимости от знака второй производной возможны следующие случаи расположения кривых (рис. 10). Рис. 10. Возможные случаи расположения кривых.
|