Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вопрос 8. Интерполяционные формулы Ньютона.
3. Интерполяционные формулы Ньютона для равноотстоящих узлов
Узлы интерполирования x0, x1,..., xn называются равноотстоящими, если , где h - шаг интерполирования. При этом для некоторой функции f(x) таблично задаются значения yi = f(xi), где xi = x0 + ih. Существуют две формулы Ньютона для случая равноотстоящих узлов интерполирования, которые называются соответственно первой и второй интерполяционными формулами Ньютона и имеют вид:
; , В этих формулах Diyj - конечные разности, где i - порядок разности, j - ее порядковый номер, а параметры t и q определяются следующим образом:
t = (x - x0) / h; q = (x - xn) / h.
Конечные разности первого порядка вычисляются как Dyj = yj+1 – yj, где j = , для более высоких порядков используется известная формула
(i = 2, 3,...; j = ).
Получаемые конечные разности удобно представлять в табличной форме записи, например, в виде табл. 1, которая называется горизонтальной таблицей конечных разностей.
Таблица 1
Пepвая формула Ньютона применяется для интерполирования вперед и экстраполирования назад, т.е. в начале таблицы разностей, где строки заполнены и имеется достаточное число конечных разностей. При использовании этой формулы для интерполирования значение аргумента x должно лежать в интервале [x0, x1]. При этом за x0 может приниматься любой узел интерполяции xk с индексом , где m - максимальный порядок конечных разностей. Вторая формула Ньютона применяется для интерполирования назад и экстраполирования вперед, т.е. в конце таблицы конечных разностей. При этом значение аргумента x должно находиться в интервале [xn-1, xn], причем за xn может приниматься любой узел интерполирования . Одно из важнейших свойств конечных разностей заключается в следующем. Если конечные разности i–го порядка (i < n) постоянны, то функция представляет собой полином i–й степени. Следовательно, формула Ньютона должна быть не выше i-й степени. Первая и вторая формулы Ньютона предполагают, что узлы интерполирования являются равноотстоящими. Однако, в общем случае функция f(x) может быть задана таблицей, в которой узлы находятся на произвольном расстоянии друг от друга , где значения hi (i = ) являются различными. При таких условиях первая и вторая интерполяционные формулы Ньютона неприменимы. В данном случае, для решения задачи интерполяции применяются не конечные, а разделенные разности. Разделенная разность первого порядка определяется:
Для вычисления разделенных разностей высших порядков используется формула:
Разделенные разности удобно представлять диагональной таблицей, вид которой для n = 4 соответствует табл. 2.
Таблица 2
Интерполяционный многочлен Ньютона, использующий разделенные разности, имеет вид:
где , Пk (x) = 1. Представленная формула позволяет повышать точность вычислений постепенно, добавляя разделенные разности более высоких порядков. Следует отметить, что при этом все полученные результаты сохраняются, т.е. не вычисляются заново, а только наращиваются. Это следует из соотношения
Оценка погрешности интерполирования выполняется по формуле
|