![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Справочная информация
Через множество узловых точек таблично заданной функции можно провести бесконечное количество аппроксимирующих кривых. Задача выбора единственной из них делится на две основные подзадачи: - выбор аналитических зависимостей, отражающих физику взаимосвязи аргумента и реальной функции, когда должен быть определен общий вид приближающей функции; - выбор критерия достоверности описания реальной функции с помощью выбранных зависимостей. Существует множество подходов к построению вида приближающей функции, как функции с параметрами. Одним из них является выбор в качестве аппроксимирующей зависимости линейной комбинации некоторых известных аналитических функций. Вместе они должны отражать суть физического процесса, описываемого исходной функцией, и быть линейно независимыми на отрезке аппроксимации [ x 1, xn ]
Функции φ k (x) часто выбираются в виде полиномов, частным случаем которых являются степенные функции φ 1(x) = 1, φ 2(x) = x, φ 3(x) = x 2, φ 4(x) = x 3, …, в виде тригонометрических косинусов
или в любом другом удобном для исследователя виде. Другим подходом к построению приближающей функции является её представление сплайнами. Это избавляет исследователя от необходимости подбирать аналитические функции для аппроксимирующей зависимости и часто даёт результат, отвечающий всем требованиям, которые предъявляются к процессу аппроксимации. В качестве критерия достоверности описания реальной функции Гауссом (1794) и Лежандром (A.M.Legendre, 1805) было предложено использовать сумму квадратов отклонений значений аппроксимирующей функции от ординат узлов таблично заданной
где отклонение от каждой узловой точки Δ i, показанное на рис.2, вычисляется как
Необходимым условием экстремума квадратичной функции многих переменных F является равенство нулю всех её частных производных по параметрам c 1, c 2,..., cm
Можно показать, что для функции F, являющейся суммой квадратов отклонений, достаточные условия существования её минимума в стационарной точке выполняются тождественно. Поэтому условиями существования экстремума функции F можно пользоваться как условиями её минимума, что позволяет привести задачу аппроксимации n значений табличной функции к задаче решения системы из m линейных алгебраических уравнений с симметричной матрицей относительно этих параметров где
Параметры аппроксимации c 1, c 2,..., cm, определяемые как решение вышеприведённой системы линейных уравнений, которая сформирована для заранее выбранных функций φ 1(x), φ 2(x), …, φ m (x), дают наименьшее значение целевой функции F. Для каждого набора таких функций будет получаться своё наименьшее значение F. Поэтому для выбора наилучшей аппроксимации ориентируются на наименьшее значение погрешности аппроксимации, которая рассчитывается следующим способом для каждого набора функций φ 1(x), φ 2(x), …, φ m (x)
где под нормой таблично заданной функции понимается евклидова, квадратичная норма
Работа метода может быть проиллюстрирована на примере аппроксимации функции, заданной 8-ю узловыми точками, показанными на рис.3, и поиска её значения при х = 1.5. Для построения зависимости, аппроксимирующей таблично или графически заданную функцию, исследователь должен подобрать
Необходимо заметить, что данное представление аппроксимирующей зависимости не является единственным. Можно подобрать и другие комбинации элементарных функций, которые отражают общий характер рассматриваемой табличной функции. В соответствии с приведённым выше алгоритмом коэффициенты системы линейных алгебраических уравнений, определяющей параметры аппроксимации c 1 и c 2, будут вычисляться следующим образом
Вычисления по этим формулам удобнее выполнять, сняв с графика координаты узловых точек и сформировав из них следующую таблицу
В этом случае требуемые коэффициенты будут
Далее решение задачи приводится к решению системы из двух линейных алгебраических уравнений Эта система имеет следующее решение c 1= 0.105, c 2= 0.401. Таким образом, аппроксимирующая функция имеет вид
Её значения при табличных значения аргумента приведены ниже
С их помощью может быть вычислено значение целевой функции F
которое определяет погрешность аппроксимации
где норма таблично заданной функции была вычислена следующим образом
Решение этой задачи на ПЭВМ в программе Excel выглядит следующим образом. Оно начинается с ввода исходных данных в виде таблицы значений сглаживаемой функции (см. рис.4) и расчёта базисных функций. Затем выполняется вычисление коэффициентов системы уравнений, определяющей коэффициенты c 1 и c 2 аппроксимирующей зависимости. Это делается на основе результатов расчёта базисных функций с помощью стандартной функции СУММПРОИЗВ, которая позволяет находить сумму произведений элементов массивов. Система линейных алгебраических уравнений решается с использованием встроенной функции МОБР построения обратной матрицы системы. В заключении рассчитывается аппроксимирующая сглаживающая функция и строится её график, на котором точками отображаются значения исходной табличной функции. Рис.4.
|