![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сложение двух векторов.Произведение вектора на число.Разложение вектора по базису.
-Рассмотрим правила сложения векторов. Если слагаемые векторы путем их параллельного переноса последовательно пристраивать один за другим так, что начало последующего вектора, совпадает с концом предыдущего, то вектор, замыкающий получившуюся ломаную, является суммой данных слагаемых, причём его начало совпадает с началом первого из слагаемых векторов, а конец – с концом последнего. Правило параллелограмма. Для сложения двух векторов Правило треугольника. Для сложения двух векторов Сложение векторов с использованием координат. Каждая координата (см. Базис и разложение по базису) суммы векторов есть сумма соответствующей координаты всех (двух или более) суммируемых векторов. Например, для двумерного случая:
-Геометрически произведение При умножении вектора на число каждая из его координат умножается на это число. Операция умножения вектора на число подчиняется законам, аналогичным законам обычного умножения - Разложение вектора по базису. Определение. Пусть
то говорят, что вектор Теорема. (О разложении вектора по базису.) Любой вектор векторного пространства можно разложить по его базису и притом единственным способом. Доказательство. 1) Пусть L произвольная прямая (или ось) и Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора
Так как
|