Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Постэмбриональное развитие






Постэмбриональное развитие начинается с момента рождения или выхода организма из яйцевых оболочек и продолжается вплоть до наступления полового созревания. Постэмбриональное развитие сопровождается ростом. При этом он может быть ограничен определенным сроком или длиться в течение всей жизни.

Различают 2 основных типа постэмбрионального развития:

1. прямое развитие

2. развитие с превращением или метаморфозом (непрямое развитие)

Прямое постэмбриональное развитие - тип развития, при котором родившийся организм отличается от взрослого меньшими размерами и недоразвитием органов. В случае прямого развития молодая особь мало чем отличается от взрослого организма и ведет тот же образ жизни, что и взрослые. Этот тип развития свойственен, например, пресмыкающимся, птицам, млекопитающим.

При развитии с метаморфозом из яйца появляется личинка, порой внешне совершенно не похожая и даже отличающаяся по ряду анатомических признаков от взрослой особи. Часто личинка ведет иной образ жизни по сравнению со взрослыми организмами (например, бабочки и их личинки гусеницы). Она питается, растет и на определенном этапе превращается во взрослую особь, причем этот процесс сопровождается весьма глубокими морфологическими и физиологическими преобразованиями. В большинстве случаев организмы не способны размножаться на личиночной стадии, однако существует небольшое кол-во исключений. Например, аксолотли-личинки хвостатых земноводных амбистом-способны размножаться, при этом дальнейший метаморфоз может и не осуществляться вовсе. Способность организмов размножаться на личиночной стадии называется неотенией.

Также есть 3 периода постэмбрионального развития: -ювенильный (до окончания созревания) -пубертатный (занимает большую часть жизни) -старение (до смерти)

15.Моногибридное скрещивание, анализирующие скрещивание.:

Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре изучаемых альтернативных признаков, за которые отвечают аллели одного гена.

Моногенное наследование, изучаемое при моногибридном скрещивании — это наследование признака, за проявления которого отвечает один ген, различные формы которого называют аллелями. Например, при моногибридном скрещивании между двумя чистыми линиями растений, гомозиготных по соответствующим признакам — одного с жёлтыми семенами (доминантный признак), а другого с зелёными семенами (рецессивный признак), можно ожидать, что первое поколение будет только с жёлтыми семенами, потому что аллель жёлтых семян доминирует над аллелью зелёных.

При моногибридном скрещивании соблюдается первый закон Менделя (закон единообразия), согласно которому при скрещивании гомозиготных организмов у их потомков F1 проявляется только один альтернативный признак (доминантный), а второй находится в скрытом (рецессивном) состоянии. Потомство F1 единообразно по фенотипу и генотипу. Согласно второму закону Менделя (закон расщепления) при скрещивании гетерозигот в их потомстве F2 наблюдается расщепление по генотипу в соотношении 1: 2: 1 и по фенотипу в пропорции 3: 1.

Анализирующее скрещивание — скрещивание гибридной особи с особью, гомозиготной по рецессивным аллелям, то есть " анализатором". Смысл анализирующего скрещивания заключается в том, что потомки от анализирующего скрещивания обязательно несут один рецессивный аллель от " анализатора", на фоне которого должны проявиться аллели, полученные от анализируемого организма. Для анализирующего скрещивания (исключая случаи взаимодействия генов) характерно совпадение расщепления по фенотипу с расщеплением по генотипу среди потомков. Таким образом, анализирующее скрещивание позволяет определить генотип и соотношение гамет разного типа, образуемых анализируемой особью.

 

Мендель, проводя эксперименты по анализирующему скрещиванию растений гороха с белыми цветками (аа) и пурпурных гетерозигот (Аа), получил результат 81 к 85, что почти равно соотношению 1: 1.Он определил, что в результате скрещивания и образования гетерозиготы, аллели не смешиваются друг с другом и в дальнейшем проявляются в " чистом виде". В дальнейшем Бэтсон на этой основе сформулировал правило чистоты гамет.

16. Дигибридное скрещивание (3-ий закон Менделя):

Дигибридным называется скрещивание родительских пар, отличающихся друг от друга альтернативными вариантами двух признаков (двумя парами аллелей). Так, например, Мендель скрещивал чистолинейные по двум признакам растения гороха (дигомозиготные) с доминантными (желтая окраска и гладкая поверхность семени) и рецессивными (зеленая окраска и морщинистая поверхность семени) признаками: АА ВВ х аа bb.

При скрещивании между собой гибридов Fl (АаВb х АаВb) Менделем было получено 4 фенотипических класса гибридных семян гороха F2 в количественном соотношении: 9 желтых гладких: 3 желтых морщинистых: 3 зеленых гладких: 1 зеленое морщинистое. Однако по каждой паре признаков (9 жел. + 3 жел.: 3 зел. + 1 зел.; 9 гл. + 3 гл.: 3 морщ. + 1 морщ.) расщепление в F2 такое же, как и при моногибридном скрещивании, т. е. 3: 1. Следовательно, наследование по каждой паре признаков идет независимо друг от друга.

При дигибридном скрещивании чистолинейных растений гороха (ААВВ х aabb) гибриды F1 были фенотипически и генотипически единообразны (АаВЪ) в соответствии с первым законом Менделя. При скрещивании дигетерозиготных особей гороха между собой было получено второе поколение гибридов, имеющее четыре фенотипические комбинации двух пар признаков (22). Это объясняется тем, что при мейозе у гибридных организмов из каждой пары гомологичных хромосом в анафазе 1 к полюсам отходит по одной хромосоме. Из-за случайного расхождения отцовских и материнских хромосом ген А может попасть в одну гамету с геном В или с геном Ъ. Аналогичное произойдет и с геном а. Поэтому гибриды образуют четыре типа гамет: АВ, Аb, аВ, аb. Образование каждого из них равновероятно. Свободное сочетание таких гамет приводит к образованию четырех вариантов фенотипов в соотношении 9: 3:: 3: 1 и 9 классов генотипов.

Как при моно-, так и при дигибридном скрещивании потомство F1 единообразно как по фенотипу, так и по генотипу (проявление первого закона Менделя). В поколении F2 происходит расщепление по каждой паре признаков по фенотипу в соотношении 3: 1 (второй закон Менделя). Это свидетельствует об универсальности законов наследования Менделя для признаков, если их определяющие гены расположены в разных парах гомологичных хромосом и наследуются независимо друг от друга.

5. Какое будет расщепление по генотипу и фенотипу в F2, если гибриды второго поколения дигибридного скрещивания (см. решетку Пеннета) будут размножаться самоопылением?

По фенотипу расщепление будет 9: 3: 3: 1, а по генотипу будет 9 классов генотипов.

6. Какое число типов гамет образуют особи с генотипами AaBbCcDd и aaBbDdKkPp?

Число типов гамет (N) гетерозиготных организмов определяется по формуле: N = 2n, где n — количество гетерозигот. В нашем случае два указанных генотипа гетерозиготны по четырем признакам, поэтому n равно 4, т. е. они образуют по 16 типов гамет каждый.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал