Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Электропроводность. Закон Ома.






– закон Ома.

Выпишем это уравнение в дифференциальной форме с помощью уравнения (2.1):

, - закон Ома (2.5)

Где - удельная электропроводность, - электрический потенциал.

В одномерном виде:

(2.6)

- плотность тока

, - предельное сопротивление системы.

- удельная электропроводность среды.

Уравнения (2.5), (2.6) – закон Ома в дифференциальной форме:

, (2.7)

это прилагается к некоторому слою толщиной dx.

Продифференцируем уравнение (2.7):

, здесь S – сечение, а - сопротивление.

, тогда - закон Ома в интегральной форме.

Минусы в уравнениях (2.5), (2.6)?

В этом случае электрический потенциал меняется слева направо.

Здесь движение положительно заряженных частиц вдоль оси Ох.

За положительное направление тока принимается то направление, в котором движутся положительно заряженные частицы.

Для положительно заряженных частиц: , i> 0.

Для отрицательно заряженных частиц: - отсюда и появляется знак минус в дифференциальной форме.

Пусть - плотность электрического заряда, тогда

Подставив это уравнение в уравнение (2.5), получим:

В частном случае, если , то:

- закон Лапласа.

- закон Лапласа в одномерном случае. Отсюда:

, то есть плотность тока не меняется по координате.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал