Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
ВВЕДЕНИЕ. К 73 Численные методы: учебСтр 1 из 20Следующая ⇒
ЧИСЛЕННЫЕ МЕТОДЫ Учебное пособие Омск Издательство ОмГТУ УДК 519.61(075) ББК 22.193я73 К 73
Рецензенты: Е. Е. Макаров, к. ф.-м. н. доц., зав. каф «Математическое моделирование» ОмГУ им. Ф.М. Достоевского; Ю. Б. Никитин, к. ф.-м. н., зав. каф. медицинской биологической физики ОмГМА
Котюргина, А.С. К 73 Численные методы: учеб. пособие / А. С. Котюргина. – Омск: Изд-во ISBN 978-5-8149-0898-8
Данное пособие рассматривает основные разделы курса лекций по вычислительной математике, читаемых на потоках ИВТ-2 и Риб-3. В каждой главе содержатся основные теоретические положения, справочный материал, большое количество решенных примеров, иллюстрирующих каждый из рассматриваемых методов, а также наборы задач для индивидуальных заданий. Основными целями издания являются оказание студентам практической помощи в изучении численных методов решения задач алгебры и математического анализа и развитие навыков самостоятельной работы студентов.
Печатается по решению редакционно-издательского совета Омского государственного технического университета
УДК 519.61(075) ББК 22.193я73
ISBN 978-5-8149-0898-8 © ГОУ ВПО «Омский государственный технический университет», 2010 ВВЕДЕНИЕ Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание исследуемого объекта посредством систем линейных, нелинейных или дифференциальных уравнений, систем неравенств, определенного интеграла, многочлена с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними. После того, как математическая модель составлена, переходят к постановке вычислительной задачи. При этом устанавливают, какие характеристики математической модели являются исходными (входными)данными, какие – параметрами модели, а какие – выходными данными. Проводится анализ полученной задачи с точки зрения существования и единственности решения. На следующем этапе выбирается метод решения задачи. Во многих конкретных случаях найти решение задачи в явном виде не представляется возможным, так как оно не выражается через элементарные функции. Такие задачи можно решить лишь приближенно. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Вычислительные методы, как правило, реализуются на ЭВМ. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи. Затем для реализации выбранного вычислительного метода составляется алгоритм и программа для ЭВМ. Современному инженеру важно уметь преобразовать задачу к виду, удобному для реализации на ЭВМ и построить алгоритм решения такой задачи. В настоящее время широко используются как пакеты, реализующие наиболее общие методы решения широкого круга задач (например, Mathcad, Результаты расчета анализируются и интерпретируются. При необходимости корректируются параметры метода, а иногда математическая модель, и начинается новый цикл решения задачи.
|