Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Влияние физических и химических факторов среды на бактерии.
Температура. Высокая температура вызывает коагуляцию структурных белков и ферментов микроорганизмов. Большинство вегетативных форм гибнет при температуре 60°С в течение 30 мин, а при 80-100°С – через 1 мин. Споры бактерий устойчивы к температуре 100°С, гибнут при 130°С и более длительной экспозиции (до 2 ч.). Для сохранения жизнеспособности относительно благоприятны низкие температуры (например, ниже 0°С), безвредные для большинства микробов. Бактерии выживают при температуре ниже –100°С; споры бактерий и вирусы годами сохраняются в жидком азоте (до –250°С). Влажность. При относительной влажности окружающей среды ниже 30% жизнедеятельность большинства бактерий прекращается. Время их отмирания при высушивании различно (например, холерный вибрион – за 2 суток, а микобактерии – за 90 суток). Поэтому высушивание не используют как метод элиминации микробов с субстратов. Особой устойчивостью обладают споры бактерий. Широко распространено искусственное высушивание микроорганизмов, или лиофилизация. Метод включает быстрое замораживание с последующим высушиванием под низким (вакуумом) давлением (сухая возгонка). Лиофильную сушку применяют для сохранения иммунобиологических препаратов (вакцин, сывороток), а также для консервирования и длительного сохранения культур микроорганизмов. Ультразвук. Определенные частоты ультразвука при искусственном воздействии способны вызывать деполимеризацию органелл микробных клеток, под действием ультразвука газы, находящиеся в жидкой среде цитоплазмы, активируются и внутри клетки возникает высокое давление (до 10 000 атм). Это приводит к разрыву клеточной оболочки и гибели клетки. Ультразвук используют для стерилизации пищевых продуктов (молока, фруктовых соков), питьевой воды. Влияние кислорода на микроорганизмы. Все бактерии по типу дыхания подразделяются на облигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы. Облигатные (строгие) аэробы развиваются при наличии в атмосфере 20% кислорода (микобактерии туберкулеза), содержат ферменты, с помощью которых осуществляется перенос водорода от окисляемого субстрата к кислороду воздуха. Микроаэрофилы нуждаются в значительно меньшем количестве кислорода, и его высокая концентрация хотя и не убивает бактерии, но задерживает их рост (актиноисцеты, бруцеллы, лептоспиры). Степень кислотности или щелочности среды оказывает сильное воздействие на микроорганизмы. Кислотность и щелочность здесь понимаются как концентрация водородных и гидроксильных ионов. Под влиянием реакции среды могут изменяться активность ферментов, характер обмена веществ клетки с окружающей средой, а также проницаемость клеточной оболочки для различных веществ. Разные микроорганизмы приспособлены к обитанию в средах с различной реакцией. Некоторые из них лучше развиваются в кислой среде, другие - в нейтральной или слабощелочной. Для большинства плесневых грибов и дрожжей наиболее благоприятна слабокислая среда. Бактерии нуждаются в нейтральной или слабощелочной среде. Изменение реакции среды на микроорганизмы действует угнетающе. Повышение кислотности среды может вызвать гибель бактерий, особенно губительна повышенная кислотность для гнилостных бактерий. Споры бактерий более устойчивы к изменениям реакции среды, чем вегетативные клетки.Некоторые бактерии в процессе жизнедеятельности сами вырабатывают органические кислоты. Такие бактерии (например, молочнокислые) выносливее других, однако и они после накопления в среде определенного количества кислоты постепенно погибают. Встречаются микроорганизмы, способные регулировать реакцию среды, доводя ее до нужного уровня путем выделения веществ, которые подкисляют или подщелачивают среду.
58.Типы взаимоотношений микроорганизмов: ассоциативные, конкурентные взаимоотношения. В конкретных экологических условиях между разными группами микробов устанавливаются определенные взаимоотношения, характер которых зависит от физиологических особенностей и потребностей совместно развивающихся микробов. Кроме того, микроорганизмы вступают в различного рода взаимоотношения не только между собой, но и с простейшими, высшими растениями и другими группами организмов, составляющих почвенное население. В основном эти взаимоотношения можно условно подразделить на две большие группы: благоприятные — ассоциативные и неблагоприятные - конкурентные взаимоотношения.
Антибиотики (греч. anti- против + bios жизнь) — образуемые микроорганизмами, высшими растениями или тканями животных организмов вещества, а также полусинтетические и синтетические аналоги этих веществ, избирательно подавляющие развитие микроорганизмов или клеток злокачественных опухолей. Различают А. узкого спектра антимикробного действия, активные преимущественно в отношении или грамотрицательных микроорганизмов; широкого спектра, активные в отношении как грамположительных, так и грамотрицательных микроорганизмов.Кроме того, получены А., действующие на гельминты (гигромицин В), а также А., обладающие свойствами иммунодепрессантов, например циклоспорин А. Резистентность (устойчивость) микроорганизмов к А. является сложной проблемой, возникающей на всех этапах химиотерапии бактериальных инфекций. Различают природную и приобретенную устойчивость микроорганизмов. Природная устойчивость определяется свойствами самого вида или рода микроорганизмов. Приобретенная устойчивость связана с изменением генома микробной клетки за счет мутаций и отбора устойчивых вариантов под влиянием А. Существует два типа приобретенной устойчивости: путем одноступенчатой мутации (так называемый стрептомициновый тип), когда нарастание устойчивости после контакта с А. возникает быстро, и путем многоступенчатых мутаций (так называемый пенициллиновый тип), когда развитие устойчивости происходит медленно, ступенеобразно. Передаваемая (трансмиссивная) резистентность связана с переносом генов резистентности к А. (иногда одновременно к ряду А. — множественная резистентность) от одного микроорганизма к другому с помощью внехромосомных генетических элементов — плазмид и транспозонов. Биохимические механизмы резистентности микроорганизмов к А. обусловлены инактивацией А. за счет действия специфических ферментов, образуемых устойчивыми микроорганизмами (резистентность к пенициллинам, аминогликозидам), изменением мишени действия А. (к тетрациклинам, макролидам и др.), затруднением транспорта А. через клеточную стенку возбудителя. Для выделения микроорганизмов — продуцентов антибиотиков из естественных мест их обитания применяют разнообразные методы. Здесь же следует остановиться лишь на самой общей характеристике этих методов. В основу большинства приемов положен принцип выделения чистой культуры микроба и непосредственного испытания его по отношению к используемым тест-организмам. Однако, как отмечалось выше, существенное значение при образовании антибиотических веществ имеют и смешанные культуры. Об этом обстоятельстве также необходимо помнить при поиске продуцентов антибиотических веществ.Важное значение при выделении микробов, способных вырабатывать антибиотические вещества, или иной группы организмов имеет специфика условий их культивирования. Как уже отмечалось, микробы — продуценты антибиотиков выделяют из субстратов, где обильно развиваются разнообразные формы микроорганизмов (бактерии, актиномицеты, дрожжи, мицелиальные грибы), поэтому очень важно знать и учитывать специфику условий развития тех организмов, которые необходимо выделить. Например, большинство сапрофитных бактерий хорошо развивается на богатых по составу натуральных средах (мясопеп-тонный агар, картофельный агар, сусло-агар и др.) при рН около 7, 0 и температуре в пределах от 30 до 37 °С. Для развития актино-Мицетов и некоторых грибов эти условия также пригодны, хотя и Менее благоприятны, чем для бактерий.
микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия. Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетра-циклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например поли-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.В отдельные группы выделяют противотуберкулезные, проти-волепрозные, противосифилитические препараты. Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидо-зах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов. Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митомицин-С. Антибактериальное действие антибиотиков может быть бактерицидным, т.е. вызывающим гибель бактерий (например, у пенициллинов, цефалоспоринов), и бактериостатичес-ким. задерживающим рост и развитие бактерий (например, у тетрациклинов, левомицетина). При увеличении дозы бактериостатические антибиотики могут также вызывать гибель бактерий. Аналогичными типами действия обладают противогрибковые антибиотики: фунгицидным и фунгиостатическим. Обычно при тяжелых заболеваниях назначают бактерицидные и фунгицидные антибиотики.Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке. В зависимости от механизма действия различают пять групп антибиотиков: А антибиотики, нарушающие синтез клеточной стенки. Препараты этой группы характеризуются самой высокой избирательностью действия: они убивают бактерии и не оказывают влияния на клетки микроорганизма, так как последние связи с этим р-лактамные антибиотики являются наименее токсичными для макроорганизма; А антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. А антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. А антибиотики. ингибиторы синтеза нуклеиновых кислот А антибиотики, подавляющие синтез пуринов и аминокислот
|