![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Расчет надежности сложных структур
При расчете надежности сложной системы, состоящей из параллельных и последовательных цепей, составленных, в свою очередь, из параллельно и последовательно включенных элементов, вся система представляется в виде блоков. Для каждого блока составляются расчетные уравнения безотказной работы, из которых образуется общее уравнение безотказной работы системы.
Рис. 3. Структурная схема для расчета надежности В первом блоке элементы соединены последовательно, второй составлен из параллельных цепочек, образованных последовательно включенными элементами, и третий блок – последовательно включенные звенья, каждое из которых состоит из параллельно соединенных элементов. Вероятность безотказной работы первого участка, состоящего из n элементов,
где Рj – вероятность безотказной работы j–го элемента участка. Вероятность безотказной работы каждой из цепочек второго блока определяется по уравнению безотказной работы при последовательном соединении элементов, а всего участка – по уравнению
где К – число параллельно включенных цепочек; N – число элементов в отдельно взятой цепочке. Вероятность безотказной работы третьего участка, где применено поэлементное резервирование, определяется по формуле:
где т – число последовательно соединенных звеньев; r – число параллельно соединенных элементов в звене. Вероятность безотказной работы системы в целом будет Pc(t) = PIPIIPIII.
В ряде случаев задача определения надежности сложной системы требует применения формулы полной вероятности. В частности это имеет место при рассмотрении задач о системах мостовой схемы.
Рис. 4. Мостовая схема Система состоит из двух параллельных ветвей: одна с последовательными независимыми звеньями 1, 2, другая – 3 и 4 и соединяющего элемента 5, работает любая из ветвей или диагонали 1-5-4 или 3-5-2. Безотказная работа системы (событие А) подразделяется на несовместимые события: работу системы при работоспособном элементе 5 (событие А = А5А + где А5, Согласно теореме о вероятности суммы несовместимых событий и теореме о вероятности произведения событий получим Р(А) = Р( Где Р(А/А5) и Р(А/ Событие А при условии А5 равносильно безотказности системы из двух последовательных подсистем с двумя параллельными элементами каждая, для которой имеем Р(А/А5)=(1 – (1 – Р1)(1 – Р2))(1 – (1 – Р3)(1 – Р4)), Где Р1 Р2 Р3 Р4 – вероятности безотказной работы элементов 1, 2, 3, 4. Событие А при условии ( Р(
|