Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Табличное умножение и деление чисел.
Табличное умножение и деление изучается совместно т. е. из каждого случая умножения получают соответствующие случаи деления; если 5-3=15, то 15: 5 = 3 и 15: 3 = 5. Основой для этого служит знание учащимися связи между компонентами и результатом действия умножения. Сначала рассматриваются все табличные случаи умножения и деления с числом 3, затем 4, 5 и т. д.Табличные случаи умножения и деления с каждым числом изучаются примерно по одному плану. Прежде всего составляется таблица умножения по постоянному первому или второму множителю. Как и при составлении таблицы умножения двух, для нахождения результата используют различные приемы: произведение заменяют суммой (3-4 = 3 + 3 + 3 + 3=12); к результату предыдущего примера из таблицы прибавляют соответствующее число: 3 умножить на 4, получится 12, а при умножении 3 на 5 получится на одну тройку больше и результат вычисляют так: 12 + 3=15; можно также из известного результата вычесть соответствующее число: ученики знают, что 8-10 = 80, а в произведении 8-9 будет на одну восьмерку меньше, значит, получим: 80 — 8 = 72; используют и перестановку множителей (3-5 = 5-3).После того как составлена таблица по постоянному первому множителю, из каждого примера на умножение учащиеся составляют еще один пример на умножение (переставляют множители) и два примера на деление (на основе связи между компонентами и результатом умножения).Каждая таблица умножения по постоянному первому множителю составляется начиная со случая равных множителей (3-3, 4-4 и т. д.), поскольку случаи, предшествующие этим, уже были рассмотрены ранее в других таблицах. Примеры на умножение читаются по-разному: по 5 взять 3 раза, получится 15. Пример: Вы уже знаете таблицу умножения двух и трех, а сегодня составим таблицу умножения четырех и будем делить на 4.Учитель открывает заранее записанную на доске таблицу умножения четырех (4-4, 4-5,..., 4-9) и предлагает переписать ее в тетрадь. Прочитайте первое произведение. (4 умножить на 4.) Изобразите произведение этих чисел, используя квадрат с уголком (рис. 22). (Ученики показывают 4 ряда квадратов, по 4 квадрата в каждом.) Вычислите это произведение (16.) Как вычисляли? (4 + 4+4 + 4=16.) Запишите эту сумму внизу под таблицей умножения. (Выполняют.) Сколько же получится, если 4 умножить на 4? (16.) Запишем в таблице умножения. Теперь вычислим следующее произведение: 4-5. Как вы изобразите его на квадратах? (Дети показывают 5 рядов квадратов, по 4 квадрата в каждом.) Сколько всего квадратов? (20.) Как узнали? (4+4+4 + 4+4 = 20.) Запишем эту сумму под первой. Как можно вычислить вторую сумму, пользуясь первой? (16 + 4 = 20.) Как еще можно вычислить результат? (Переставить множители: 5-4 — это 5 + 5 + 5 + 5=20.) Сколько же получится, если 4 умножить на 5? (20.) Какой следующий пример будем решать? (4 умножить на 6.) Решите и назовите результат. (24.) Как вычисляли? (4+4 + 4+4+4 + 4 = 24.) Запишем. Как«по-другому можно решить этот пример? (Прибавить к предыдущему результату, к 20, число 4 или переставить множители: 6-4 — это 6+6+6 + 6 = 24; можно и так вычислить: 4 + 4 + 4=12 и еще 4 + 4 + 4=12, 12+12 = 24.)В таком же плане рассматриваются и другие случаи умножения, после чего ученики читают таблицу умножения.Объясните, почему начали составлять таблицу со случая 4-4? (Другие случаи уже были в таблицах.) Какие еще примеры на умножение можно составить с такими же результатами? (Переставим множители и получим примеры на умножение на 4.)Рядом с таблицей умножения четырех ученики сами записывают таблицу умножения на 4 и читают ее по-разному.Ученики составляют по каждому примеру на умножение два примера на деление и записывают их. Последними составляются примеры к случаю 4-4; здесь получаются одинаковые примеры на деление.Полезно предложить ученикам рассмотреть все примеры первой таблицы и сказать, что интересного они заметили. Дети должны ответить, что первые множители одинаковые, вторые множители увеличиваются на единицу, а произведения на 4 единицы. Так же сравниваются примеры и других столбиков.Как уже отмечалось, аналогично проводится работа над другими таблицами. Число новых случаев в каждой следующей таблице уменьшается. Учащиеся от таблицы к таблице проявляют больше самостоятельности в их составлении. Они быстро замечают, что в каждой таблице умножения по постоянному первому множителю первым берется пример с одинаковыми множителями, что в каждом следующем примере на единицу больше второй множитель (2-3, 2-4). Все это помогает учащимся самим и составить очередной новый пример, и решить его. Уже при составлении таблицы умножения четырех или пяти можно предложить учащимся самим назвать первый, второй и т. д. примеры таблицы по порядку.Приведем краткую таблицу умножения, подлежащую запоминанию наизусть. Зная эту таблицу, можно решить все примеры, относящиеся к табличному умножению и делению. Рассмотрев таблицу, ученики сами могут пояснить, почему включены только эти случаи и почему здесь отсутствуют остальные. В ходе изучения таблиц и позднее необходимо уделять большое внимание упражнениям на запоминание табличных результатов: составить четыре примера на умножение и деление с одинаковыми числами (4-3=12, 3-4=12, 12: 4 = 3, 12: 3=4), повторить таблицы по порядку и вразбивку, составить по памяти таблицу умножения двух или на 2, трех или на 3 и т. д., заменить число (24) произведением соответствующих множителей (8-3, 6-4), отгадать задуманное число (если его умножили на 8 и получили 72). Полезно в этих целях вместе с учащимися составить таблицу умножения Пифагора и научить ею пользоваться. После изучения всех таблиц умножения рассматриваются случаи умножения и деления с нулем. Сначала вводится случай умножения нуля на любое число (0-5, 0-2, 0-7). Результат учащиеся находят сложением (0-2 = = 0+0 = 0, 0-3 = 0 + 0 + 0 = 0). Решив ряд аналогичных примеров, ученики замечают, что при умножении нуля на любое число получается нуль. Этим правилом они в дальнейшем и руководствуются.Если второй множитель равен нулю, то результат нельзя найти сложением, нельзя использовать и перестановку множителей, так как это новая область чисел, в которой перемести- тельное свойство умножения не раскрывалось. Поэтому второе правило: «Произведение любого числа на нуль считают равным нулю»—учитель просто сообщает детям.Затем оба эти правила применяются при выполнении различных упражнений на вычисления.Деление нуля на любое число, не равное нулю (0: 6), рассматривается на основе связи между компонентами и результатом деления. Ученики рассуждают так: чтобы 0 разделить на 6, надо найти число, при умножении которого на 6 получится 0. Это нуль, так как 0-6=0. Значит, 0: 6 = 0. В результате решения ряда аналогичных примеров ученики замечают, что при делении нуля на любое число, не равное нулю, частное равно нулю. В дальнейшем учащиеся пользуются этим правилом.Как известно, делить на нуль нельзя. Этот факт сообщается детям и поясняется на примере: нельзя 8 разделить на 0, так как нет такого числа, при умножении которого на нуль получится 8.Необходимо чаще включать в тренировочные упражнения случаи умножения и деления с числами 0 и 1, сравнивая соответствующие приемы (5-0 и 5-1), чтобы предупредить их смешение. Билет №27 Делители и кратные числа. Наибольший общий делитель и наименьшее общее кратное. Способы нахождения НОД и НОК
Методика обучения письменным приемам сложения и вычитания
Билет №28 Понятие числового равенства и неравенства. Основные свойства истинных числовых равенств и неравенств.
|