Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Конформационная изомерия
В молекулах отдельные структурные элементы (атомы и атомные группировки) совершают вращательные и колебательные движения относительно друг друга, в том числе возможно свободное вращение вокруг углерод-углеродных s - связей. Таким образом, молекулы алканов могут иметь множество положений атомов в пространстве, что является следствием такого вращения. Конформационная изомерия как вид стереоизомерии связана с различным пространственным расположением атомов в молекуле, обусловленным таким вращением. Поэтому конформационная изомерия характерна для всех органических соединений (за исключением наиболее простых), в том числе и для насыщенных углеводородов, начиная с этана C2Н6. Различные положения атомов и атомных группировок в пространстве, возникающие в результате их вращения вокруг s - связей, называются конформациями данной молекулы. Те состояния, которые отвечают минимумам (а иногда считается, и максимумам) на энергетической диаграмме, именуются конформационными изомерами или конформерами. Их взаимные переходы обозначаются как конформационные переходы. В реальности жидкие и газообразные вещества существуют в виде смесей конформеров, среди которых преобладают энергетически более выгодные. Для лучшего рассмотрения этих конформаций модели молекул проецируются на плоскость (проекции Ньюмена*). На рисунке наблюдатель смотрит вдоль оси связи C–C (относительно которой рассматриваются конформации) и видит, что один атом углерода находится за другим. Ближайший к наблюдателю атом углерода изображают точкой; от него идут три связи к трём другим атомам. Более удаленный атом углерода изображают в виде круга; принадлежащие ему заместители как бы «высовываются» из-за круга. Рассмотрим внутримолекулярное вращение этана H3C–CH3 вокруг связи C–C. В этом процессе одна из метильных групп молекулы может занимать относительно другой метильной группы множество положений, из которых два (А и В)
(А) (В)
представляют особый интерес. Изобразим их проекционными формулами Ньюмена:
Угол поворота одной атомной группировки относительно другой обозначается j и называется торсионным углом. При значениях j = 0° (360°), 120° и 240° (–120°) атомы водорода находятся один за другим (максимально сближены в пространстве). Такую конформацию (В) называют заслонённой. За счёт ван-дер-ваальсового отталкивания атомов и отталкивания спаренных электронов химической связи эта конформация обладает максимальной конформационной энергией (наименее стабильна). При значениях j = 60°, 180° и 300° (–60°) атомы водорода максимально удалены один от другого. Эта конформация (А), которую называют заторможенной, скошенной или гош- конформацией, обладает минимальной конформационной энергией (наиболее стабильна). В случае этана три энергетические ямы при заторможенной конформации и три энергетических барьера при заслонённой конформации одинаковы. Между двумя экстремальными случаями существуют промежуточные конформации. Вращение от устойчивой и до неустойчивой конформации требует определённой энергии. Величина энергетического барьера, затрудняющего превращение заторможенного конформера в заслонённый, называется поворотной или торсионной энергией, или торсионным напряжением. Для этана эта энергия составляет ~12 кДж/моль, что при обычных условиях соответствует частоте перехода из одной гош -конформации в другую, равной 1010 с -1 (каждую секунду происходит 1010 переходов). В то же время на 10 000 молекул этана, обладающих заторможенной конформацией, приходится лишь одна, обладающая заслонённой конформацией. Энергетическая диаграмма внутримолекулярного вращения этана изображена на рисунке 1.1.
Рис. 1.1. Энергетическая диаграмма внутримолекулярного вращения этана
Сложнее обстоит дело с соединениями типа RCH2-CH2R. Рассмотрим конформации бутана (R = CH3), возникающие при его внутримолекулярном вращении относительно центральной C–C связи (рис.1.2).
Рис.1.2. Энергетическая диаграмма внутримолекулярного вращения бутана относительно связи С2–С3
Зависимость конформационной энергии от торсионного угла 1, 2-дизамещённых этанов в принципе схожа с энергетической кривой незамещённого этана. Однако глубина энергетических ям и высота энергетических барьеров в этом случае различны. Самый глубокий минимум принято называть глобальным, остальные — локальными. Свободному вращению вокруг s - связи препятствуют громоздкие заместители у атомов углерода. Таким образом, барьеры вращения для поворота вокруг связи C2–C3 в н -бутане больше, чем в этане. Несмотря на этот энергетический барьер, конформеры н -бутана не могут быть разделены. В общих чертах величина энергетического барьера должна быть около 80—100 кДж/моль, чтобы предотвратить быстрое взаимное превращение и выделить конформеры при комнатной температуре. При удлинении молекулы (увеличении числа связей, вокруг которых возможно вращение) число конформеров растет в геометрической прогрессии. С другой стороны, замыкание цепи в цикл накладывает ограничения на вращение вокруг связей. Атомы уже не могут совершать полный оборот 360°, что приводит к резкому уменьшению числа возможных конформеров.
|