![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Первые разработки АТС с программным управлением
Справедливость приведенного в качестве эпиграфа тезиса подтверждает не только несовершенство проектов старика Хоттабыча, придуманного тем же автором, но и критический анализ различных проектов отечественных цифровых АТС. Тем не менее, миллионы школьников продолжают увлекаться приключениями литературных героев Лагина, а миллионы абонентов обслуживаются современными АТС отечественной разработки, причем обслуживаются отнюдь не хуже, чем рассмотренными в предыдущей главе импортными станциями. К первому поколению отечественных АТС с программным управлением относятся четыре системы, которые и сегодня функционируют в составе ВСС РФ. Это городские станции МТ-20, учрежденческие и сельские АТС КВАНТ, междугородные станции КВАРЦ и сельские - ИСТОК. О каждой из них в свое время, все же, что-то было написано, поэтому, прежде всего, хотелось бы сказать несколько слов о менее известном, но чрезвычайно интересном проекте импульсно-временного транзитного узла (ИВТУ) - первого цифрового коммутационного узла с программным управлением, включенного в отечественную ТфОП. Его разработка выполнялась с начала 60-х годов, почти в то же время, что и разработка прототипов основных импортных платформ, рассмотренных в предыдущей главе. В 1966 г. в Берлине (ГДР) была сдана в опытную эксплуатацию первая экспериментальная отечественная АТС, в 1972 г., также в содружестве со странами СЭВ, были завершены работы по экспериментальному комплексу ИЦСС (интегральной цифровой системы связи). Логическим продолжением этих работ стал импульсно-временной транзитный узел ИВТУдля городских сетей с узлообразованием, управляемый вычислительным комплексом типа «Нева». Экспериментальный импульсно-временной транзитный узел МВТУ был первой полностью электронной цифровой станцией с программным управлением, включенной в нашей стране в действующую телефонную сеть. ИВТУ обеспечил взаимодействие координатных и декадно-шаговых АТС с электронным узлом с устранением помех, приходящих по сигнальным каналам от электромеханических станций, программную поддержку заданных показателей качества обслуживания, обработку статистики и ряд других, принципиально новых для того времени функций. Узел состоит из двух частей: коммутационного оборудования и управляющего комплекса «Нева», разработанного под руководством В.И. Шляпоберского в двух вариантах. Компактный вариант комплекса, «Нева-2» с микропрограммным управлением, разрабатывался в Москве под руководством Б.А. Лопусова, а высокопроизводительная ЭУМ типа «Нева-1» с аппаратной реализацией управления центральным процессором - в Институте кибернетики АН УССР им. В. М. Глушкова. Машины «Нева» производились в Германии (ГДР) и имели характеристики, приведенные в таблице 6.1. Как видно из этой таблицы, машины того времени были, по сегодняшним меркам, примитивными, а технология программирования и само программное обеспечение были вообще «неандертальскими». Именно поэтому разработка ИВТУ заняла гораздо больше времени, чем ожидалось. Это произошло, отчасти, из-за проблем, связанных с новыми технологиями, но главным образом потому, что трудоемкость программирования сильно недооценили. Такая же недооценка имела место и во всех других больших программных проектах телефонных станций того времени - первая система 1 ESS, например, была установлена в Суссанне, штат Нью Джерси, в 1965 году, а приемлемо работающая версия программного обеспечения для нее реально появилась только через год. Спустя тридцать лет мы все еще не вполне оцениваем огромные усилия, которые придется затратить на составление программ, - можете себе представить, как слабо их оценивали тогда, когда составлялись первые программы. Об этом мы еще поговорим в главе 9, посвященной программному управлению. В состав коммутационного оборудования (рис. 6.1) входили: коммутационное поле пространственно-временного типа ПВКС, имевшее небольшую, по сегодняшним меркам, емкость до 200 трактов Е1, оперативные запоминающие устройства пространственной и временной частей коммутационного поля ОЗУКС, комплекты КСТ сопряжения с цифровыми трактами, комплекты КПЛС приема и передачи линейных сигналов для взаимодействия узла с декадно-шаговыми и координатными станциями, комплекты КППСУ приема и передачи многочастотных сигналов управления кодом «2 из 6», устройства УСПУС сопряжения коммутационного оборудования с управляющим комплексом, периферийные устройства управления ПУУ, входящие в состав перечисленных выше блоков, а также устройства УК контроля всех блоков коммутационного оборудования; общестанционный импульсный генератор ОИГ, блоки вторичного электропитания БП и пульт оператора для выполнения эксплуатационных процедур. Пространственно-временное коммутационное поле включало в себя блоки пространственной коммутации БПК емкостью 15x15 трактов Е1, соединенные в трехкаскадную схему (рис. 6.2). В блоках пространственной коммутации предусматривалось дополнительное временное уплотнение, позволявшее использовать один и тот же физический блок во всех трех (I, II и III) каскадах БПК. Блок (блоки) временной коммутации подключались к блокам пространственной коммутации по «петлевому» принципу. Количество временных коммутаторов ВК, включаемых в блок, зависело от интенсивности и характера нагрузки и определялось расчетным путем по заданной вероятности потерь. Рис. 6.2 Пространственно-временное коммутационное поле ИВТУ Принцип работы блока временной коммутации поясняет рис. 6.3. Для соединения абонента А, передающего и принимающего информацию по каналу с номером / (на рисунке принято /=5), с абонентом Б, которому предоставлен другой канал с номером/(на рисунке принято/=10), информация, передаваемая от абонента А к абоненту Б, переводится с помощью ВК из канала / в канал/ (т.е. из КИ5 в КИ10), а информация, передаваемая в обратном направлении, переводится из канала/ в канал / (т.е. из КИ10 в КИ5). Общестанционный импульсный генератор ОИГ обращается в ЗУ СС циклически в порядке следования канальных интервалов, т.е. считывает и записывает информацию в десятую строку ЗУ СС только в интервалах КИ10. К этой строке ОЗУ ВК обращается в произвольном временном интервале, который указан в управляющем слове, поступившем от ЭУМ. В рассматриваемом на рисунке примере обращение к десятой строке ЗУ СС производится в интервалах КИ5. Смена информации должна происходить достаточно быстро, без потери канального интервала, для чего сначала производится считывание информации из строки ЗУ СС, а потом, в этом же интервале, - запись новой информации. Таким образом, в рассматриваемом примере информация абонента А хранится в ЗУ СС в каждом цикле в интервалах с 5 по 10, а информация абонента Б - в интервалах с 10 по 5. Фактически запись и считывание проводятся со сдвигом на один канальный интервал для компенсации задержки в преобразователях кода. Описанный способ организации временнбго коммутатора позволяет управлять соединением, занимая одну строку в ОЗУ ВК и одну строку ЗУ СС. Рис. 6.3 Временная коммутация в ИВТУ
|