Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Материалов в конструкцияхСтр 1 из 17Следующая ⇒
ПРАКТИКА ПСК № 1 МАТЕРИАЛЫ ДЛЯ СТРОИТЕЛЬНЫХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ. ОСНОВНЫЕ СВОЙСТВА И РАБОТА МАТЕРИАЛОВ В КОНСТРУКЦИЯХ
1.1. Требуемые свойства металлов и методы их оценки Для строительных металлических конструкций используется в основном малоуглеродистая сталь и алюминиевые сплавы. В опорных частях тяжелых конструкций при действии больших сжимающих усилий применяются отливки из литой углеродистой стали и серого чугуна. Для висячих и предварительно напряженных конструкций используются также тросы и пучки из высокопрочной проволоки и стержни из арматурной стали. Сталь обладает почти идеальным комплексом свойств для использования в строительных конструкциях: сочетание прочности и пластичности, хорошая свариваемость, однородность механических свойств. Основные недостатки стали: относительно низкая коррозионная стойкость и необходимость специальной защиты стальных конструкций от коррозии, снижение пластических свойств при низких температурах, малая огнестойкость. К достоинствам алюминиевых сплавов относятся малая плотность (почти в 3 раза меньше, чем у стали) при относительно высокой прочности, повышенная стойкость против коррозии и сохранение высоких упругопластических свойств при низких температурах. Однако низкий модуль упругости приводит к повышенной деформативности алюминиевых конструкций и ухудшает их устойчивость, а падение прочностных свойств алюминиевых сплавов при температуре 300 °С снижает огнестойкость. Чугун хорошо работает на сжатие и обладает высокой коррозионной стойкостью, однако малая прочность при растяжении, хрупкость материала и плохая свариваемость привели к тому, что в настоящее время чугун практически не применяется для строительных конструкций. Чугунные конструкции можно встретить в зданиях и сооружениях, построенных в XIX и XX вв. В настоящее время из чугуна делаются тюбинги метро. Применяется он иногда в литых деталях опор тяжелых конструкций. Надежность и долговечность металлических конструкций во многом зависят от свойств материала. Наиболее важными для работы конструкций являются механические свойства: прочность, упругость, пластичность, склонность к хрупкому разрушению, ползучесть, твердость, а также свариваемость, коррозионная стойкость, склонность к старению и технологичность. Прочность характеризует сопротивляемость материала внешним силовым воздействиям без разрушения. Упругость — свойство материала восстанавливать свою первоначальную форму после снятия внешних нагрузок. Пластичность — свойство материала сохранять деформированное состояние после снятия нагрузки, т.е. получать остаточные деформации без разрушения. Хрупкость — способность разрушаться при малых деформациях. Ползучесть — свойство материала непрерывно деформироваться во времени без увеличения нагрузки. Твердость — свойство поверхностного слоя металла сопротивляться упругой и пластической деформациям или разрушению при внедрении в него индентора из более твердого материала. Прочность металла при статическом нагружении, а также его упругие и пластические свойства определяются испытанием стандартных образцов (прямоугольного или круглого сечения) на растяжение с записью диаграммы зависимости между напряжением и относительным удлинением , где ; F — нагрузка; А — первоначальная площадь поперечного сечения образца; l0— первоначальная длина рабочей части образца; — удлинение рабочей части образца. Диаграммы растяжения различных металлов показаны на рис. 1.1, а. Основными прочностными характеристиками металла являются временное сопротивление и предел текучести Временное сопротивление — это наибольшее условное напряжение в процессе разрушения образца (предельная разрушающая нагрузка, отнесенная к первоначальной площади поперечного сечения). Предел текучести — напряжение, при котором деформации образца растут без изменения нагрузки и образуется площадка текучести — металл «течет». Для металлов, не имеющих площадки текучести, определяется условный предел текучести 0, 2, т.е. такое напряжение, при котором остаточное относительное удлинение достигает 0, 2 %.
Если металл подвергается действию циклически меняющихся напряжений (например, чередующихся растяжения и сжатия), то при достаточно большом числе циклов разрушение может произойти при напряжении меньше временного сопротивления и даже предела текучести. Это явление называется усталостью металла. Склонность металла к усталостному разрушению устанавливается на основании результатов вибрационных испытаний. Мерой пластичности материала служит относительное остаточное удлинение при разрыве 5. Перед разрушением в образце в месте разрыва образуется «шейка», поперечное сечение образца уменьшается и в зоне шейки развиваются большие местные пластические деформации. Относительное удлинение при разрыве складывается из равномерного удлинения на всей длине образца и локального удлинения в зоне шейки . Последнее зависит от размеров и формы образца, наличия местных дефектов и других случайных факторов, поэтому более показательной характеристикой пластичности является равномерное относительное удлинение . Мерой пластичности может служить также относительное сужение при разрыве, %: где А и Ао — первоначальная и конечная после разрыва площади сечения образца. Упругие свойства материала определяются модулем упругости Е = tg , где — угол наклона линии деформирования металла к оси абсцисс, и пределом упругости , т.е. таким максимальным напряжением, при котором деформации после снятия нагрузки исчезают. Несколько ниже находится предел пропорциональности — напряжение, до которого материал работает линейно по закону Гука (1.1) В известной степени и являются условными напряжениями, значения которых зависят от точности определения. Обычно принимают, что предел пропорциональности соответствует напряжениям, при которых Е = tga уменьшается в 1, 5 раза, а предел упругости — напряжениям, при которых относительная деформация составляет 0, 05 % (рис. 1.1, в). Склонность металла к хрупкому разрушению оценивается по результатам испытания на ударную вязкость на специальных маятниковых копрах (рис. 1.2). Под действием удара молота копра образец разрушается. Ударная вязкость КС определяется затраченной на разрушение образца работой, отнесенной к площади поперечного сечения, и измеряется в Дж/см2. Для сопоставимости результатов испытания проводятся на стандартных образцах при определенных температурах. Для тонкого металла используют образцы толщиной 5 мм. Один и тот же материал может разрушаться как вязко, т.е. с развитием значительных пластических деформаций, так и хрупко, в зависимости от целого ряда факторов (см. подразд. 1.2.1). Для ужесточения условий испытаний и повышения концентрации напряжений в образцах делают надрез (U- или V-образный) или трещину. В местах надреза напряжения резко повышаются (возникает концентрация напряжений), что способствует переходу металла в хрупкое состояние. Таким образом, ударная вязкость является комплексным показателем, характеризующим состояние металла (хрупкое или вязкое), сопротивление динамическим (ударным) воздействиям и чувствительность к концентрации напряжений, и служит для сравнительной оценки качества материала. В сечении разрушенного образца можно выделить две зоны: первая зона с волокнистой структурой характеризует пластическую составляющую, вторая зона с кристаллическим изломом — хрупкую. Чем более пластичен материал, тем больше пластическая составляющая. Качественной характеристикой состояния материала служит процент волокнистости в изломе В, %. Помимо испытаний на ударную вязкость для оценки склонности металла к хрупкому разрушению используются и другие методы. Ползучесть в металлах, применяемых в строительных конструкциях, проявляется в основном при высоких температурах, а также для термообработанных высокопрочных сталей. Оценка степени ползучести производится по результатам длительных испытаний образцов на растяжение. Основной способ соединения элементов металлических конструкций — сварка, поэтому важнейшим требованием, предъявляемым к металлам строительных конструкций, является свариваемость. Оценка свариваемости производится по химическому составу (углеродному эквиваленту), а также путем применения специальных технологических проб.
Долговечность металлических конструкций определяется в первую очередь коррозионной стойкостью металла. Сопротивляемость металла коррозионным повреждениям зависит от химического состава и проверяется путем длительной выдержки образцов в агрессивной среде. Мерой коррозионной стойкости служит скорость коррозии по толщине металла, мм/год. С течением времени свойства стали несколько меняются: увеличиваются предел текучести и временное сопротивление, снижается пластичность, сталь становится более хрупкой. Это явление называется старением стали (см. подразд. 1.3). Склонность стали к старению оценивается по результатам испытания на ударную вязкость искусственно состаренных образцов (после механического старения). При изготовлении и монтаже металлических конструкций широко используются такие операции, как гибка, резка, строжка, сверление отверстий, связанные с процессами упругопластического изгиба, скалывания, обработки резанием, термическим воздействием. Для качественного выполнения этих операций металл должен иметь соответствующие технологические свойства. Так, повышенная твердость затрудняет сверление и механическую резку, недостаточная вязкость приводит к возникновению в гнутых деталях трещин, термическое воздействие ускоряет процесс старения металла и способствует его переходу в хрупкое состояние. Оценка технологических свойств металла производится по химическому составу. В зависимости от содержания отдельных элементов устанавливается режим огневой резки и сварки. Влияние пластических деформаций и термического воздействия на охрупчивание металла определяется по результатам испытаний на ударную вязкость после искусственного старения. Для этого образец подвергается растяжению до остаточного удлинения 10% и последующему отпуску в печи при температуре 250 °С. Для предотвращения возникновения трещин при изготовлении гнутых деталей проводятся испытания на холодный изгиб. Плоский образец (рис. 1.3) загибается вокруг оправки определенного диаметра на 180°, при этом на внешней стороне образца не должны появляться трещины. Испытание дает качественную оценку вязкости металла.
Расчет конструкций на прочность для обеспечения их надежности основывается на минимальных значениях прочностных характеристик. Оборудование же для механической обработки металла (сверление, строжка, механическая резка и т.д.) с учетом возможного разброса свойств должно быть рассчитано на максимальные значения характеристик. Для сокращения затрат на увеличение мощности оборудования и повышения скорости обработки целесообразно ограничить верхние границы прочностных характеристик и прежде всего временного сопротивления. Значения показателей основных свойств металлов устанавливаются в государственных стандартах (ГОСТах) и технических условиях (ТУ). В необходимых случаях при заказе металла оговариваются дополнительные требования по тем или иным свойствам. Из физических характеристик металлов с точки зрения работы строительных конструкций наиболее важными являются плотность, модуль упругости при растяжении, модуль упругости при сдвиге, коэффициент поперечной деформации и коэффициент линейного расширения. Значения этих характеристик приведены в табл. 1.1.
Таблица 1.1
|