Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Стали и алюминиевые сплавы
1.2.1. Общая характеристика сталей. Сталь — это сплав железа с углеродом, содержащий легирующие добавки, улучшающие качество металла, и вредные примеси, которые попадают в металл из руды или образуются в процессе выплавки. Структура стали. В твердом состоянии сталь является поликристаллическим телом, состоящим из множества различно ориентированных кристаллов (зерен). В каждом кристалле атомы (точнее, положительно заряженные ионы) расположены упорядочено в узлах пространственной решетки. Для стали характерны объемно-центрированная (ОЦК) и гранецентрированная (ГЦК) кубическая кристаллическая решетка (рис. 1.4). Каждое зерно как кристаллическое образование резко анизотропно и имеет различные свойства по разным направлениям. При большом числе поразному ориентированных зерен эти различия сглаживаются, статистически в среднем по всем направлениям свойства становятся одинаковыми и сталь ведет себя как квазиизотропное тело. Структура стали зависит от условий кристаллизации, химического состава, режима термообработки и прокатки. Температура плавления чистого железа равна 1535°С, при твердении образуются кристаллы чистого железа — феррита, так называемого 8-железа с объемно-центрированной решеткой (рис. 1.4, а); при температуре 1490 °С происходит перекристаллизация, и 5-железо переходит в у-железо с гранецентрированной решеткой (рис. 1.4, б). При температуре 910°С и ниже кристаллы у-железа вновь превращаются в объемно-центрированные и это состояние сохраняется до нормальной температуры. Последняя модификация называется а-железом. При введении углерода температура плавления снижается и для стали с содержанием углерода 0, 2 % составляет примерно 1520°С. При остывании образуется твердый ра- створ углерода в у-железе, называемый аустенитом, в котором атомы углерода располагаются в центре ГЦК решетки. При температуре ниже 910 °С начинается распад аустенита. Образующееся -железо с ОЦК решеткой (феррит) плохо растворяет углерод. По мере выделения феррита аустенит обогащается углеродом и при температуре723 °С превращается в перлит — смесь феррита и карбида железа Fe3C, называемого цементитом.
Рис. 1.4. Кубическая кристаллическая решетка: а — объемноцентрированная; б — гранецентрированная
Таким образом, при нормальной температуре сталь состоит из двух основных фаз: феррита и цементита, которые образуют самостоятельные зерна, а также входят в виде пластинок в состав перлита (рис. 1.5). Светлые зерна — феррит, темные — перлит).
Феррит весьма пластичен и малопрочен, цементит тверд и хрупок. Перлит обладает свойствами, промежуточными между свойствами феррита и цементита. В зависимости от содержания углерода преобладает та или иная структурная составляющая. Величина зерен феррита и перлита зависит от числа очагов кристаллизации и условий охлаждения и существенно влияет на механические свойства стали (чем мельче зерно, тем выше качество металла). Легирующие добавки, входя в твердый раствор с ферритом, упрочняют его. Кроме того, некоторые из них, образуя карбиды и нитриды, увеличивают число очагов кристаллизации и способствуют образованию мелкозернистой структуры. Под влиянием термической обработки изменяются структура, величина зерна и растворимость легирующих элементов, что приводит к изменению свойств стали. Простейшим видом термической обработки является нормализация. Она заключается в повторном нагревании проката до температуры образования аустенита и последующем охлаждении на воздухе. После нормализации структура стали получается более упорядоченной, что приводит к улучшению прочностных и пластических свойств стального проката и его ударной вязкости, а также повышению однородности. При быстром остывании стали, нагретой до температуры, превосходящей температуру фазового превращения, сталь закаливается. Структуры, образующиеся после закалки, придают стали высокую прочность. Однако пластичность ее снижается, а склонность к хрупкому разрушению повышается. Для регулирования механических свойств закаленной стали и образования желаемой структуры производится ее отпуск, т.е. нагревание до температуры, при которой происходит желательное структурное превращение, выдержка при этой температуре в течение необходимого времени и затем медленное остывание1. При прокатке в результате обжатия структура стали меняется. Происходит размельчение зерен и различное их ориентирование вдоль и поперек проката, что приводит к определенной анизотропии свойств. Существенное влияние оказывают также температура прокатки и скорость охлаждения. При высокой скорости охлаждения возможно образование закалочных структур, что приводит к повышению прочностных свойств стали. Чем толще прокат, тем меньше степень обжатия и скорость охлаждения. Поэтому с увеличением толщины проката прочностные характеристики снижаются. Таким образом, варьируя химический состав, режимы прокатки и термообработки, можно изменить структуру и получить сталь с заданными прочностными и другими свойствами. Классификация сталей. По прочностным свойствам стали условно подразделяются на три группы: обычной ( < 29 кН/см2), повышенной ( = 29...40 кН/см2) и высокой прочности ( > 40 кН/см2). Повышение прочности стали достигается легированием и термической обработкой. По химическому составу стали подразделяются на углеродистые илегированные. Углеродистые стали обыкновенного качества состоят из железа и углерода с некоторой добавкой кремния (или алюминия) и марганца. Прочие добавки специально не вводятся и могут попасть в сталь из руды (медь, хром и т.д.). Углерод (У)1, повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому для строительных металлических конструкций применяются только низкоуглеродистые стали с содержанием углерода не более 0, 22 %. В состав легированных сталей помимо железа и углерода входят специальные добавки, улучшающие их качество. Поскольку большинство добавок в той или иной степени ухудшают свариваемость стали, а также удорожают ее, в строительстве в основном применяются низколегированные стали с суммарным содержанием легирующих добавок не более 5 %. Основными легирующими добавками являются кремний (С), марганец (Г), медь (Д), хром (X), никель (Н), ванадий (Ф), молибден (М), алюминий (Ю), азот (А). Кремний раскисляет сталь, т.е. связывает избыточный кислород и повышает ее прочность, но снижает пластичность, ухудшает при повышенном содержании свариваемость и коррозионную стойкость. Вредное влияние кремния может компенсироваться повышенным содержанием марганца. Марганец повышает прочность, является хорошим раскислителем и, соединяясь с серой, снижает ее вредное влияние. При содержании марганца более 1, 5 % сталь становится хрупкой. Медь несколько повышает прочность стали и увеличивает ее стойкость против коррозии. Избыточное содержание меди (более 0, 7 %) способствует старению стали и повышает ее хрупкость.
Хром и никель повышают прочность стали без снижения пластичности, и улучшают ее коррозионную стойкость. Алюминий хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость. Ванадий и молибден увеличивают прочность почти без снижения пластичности и предотвращают разупрочнение термообработанной стали при сварке. Азот в несвязанном состоянии способствует старению стали и делает ее хрупкой, поэтому его должно быть не более 0, 009 %. В химически связанном состоянии с алюминием, ванадием, титаном и другими элементами он образует нитриды и становится легирующим элементом, способствуя получению мелкозернистой структуры и улучшению механических свойств. Фосфор относится к вредным примесям, так как, образуя твердый раствор с ферритом, повышает хрупкость стали, особенно при пониженных температурах (хладноломкость). Однако при наличии алюминия фосфор может служить легирующим элементом, повышающим коррозионную стойкость стали. На этом основано получение атмосферостойких сталей. Сера вследствие образования легкоплавкого сернистого железа делает сталь красноломкой (склонной к образованию трещин при температуре 800—1000 °С). Это особенно важно для сварных конструкций. Вредное влияние серы снижается при повышенном содержании марганца. Содержание серы и фосфора в стали ограничивается и должно составлять не более 0, 03 — 0, 05% в зависимости от типа (марки) стали. Вредное влияние на механические свойства стали оказывает насыщение ее газами, которые могут попасть из атмосферы в металл, находящийся в расплавленном состоянии. Кислород действует подобно сере, но в более сильной степени, и повышает хрупкость стали. Несвязанный азот также снижает качество стали. Водород хотя и удерживается в незначительном количестве (0, 0007 %), но, концентрируясь около включений в межкристаллических областях и располагаясь преимущественно по границам зерен, вызывает в микрообъемах высокие напряжения, что приводит к снижению сопротивления стали хрупкому разрушению, снижению временного сопротивления и ухудшению пластических свойств. Поэтому расплавленную сталь (например, при сварке) необходимо защищать от воздействия атмосферы. В зависимости от вида поставки стали подразделяются на горячекатаные и термооб-работанные (нормализованные или термически улучшенные). В горячекатаном состоянии сталь далеко не всегда обладает оптимальным комплексом свойств. При нормализации измельчается структура стали, повышается ее однородность, увеличивается вязкость, однако сколько-нибудь существенного повышения прочности не происходит. Термическая обработка (закалка в воде и высокотемпературный отпуск) позволяет получить стали высокой прочности, хорошо сопротивляющиеся хрупкому разрушению. Затраты по термической обработке стали можно существенно снизить, если проводить закалку непосредственно с прокатного нагрева. Сталь, применяемая в строительных металлических конструкциях, производится в основном двумя способами: в мартеновских печах и конвертерах с продувкой кислородом. Свойства мартеновских и кислородно-конвертерных сталей практически одинаковы, однако кислородно-конвертерный способ производства значительно дешевле и постепенно вытесняет мартеновский. Для наиболее ответственных деталей, где требуется особо высокое качество металла, используются также стали, получаемые путем электрошлакового переплава (ЭШП). С развитием электрометаллургии возможно более широкое использование в строительстве сталей, получаемых в электропечах. Электросталь отличается низким содержанием вредных примесей и высоким качеством. По степени раскисления стали могут быть кипящими, полуспокойными и спокойными.
Нераскисленные стали кипят при разливке в изложницы вследствие выделения газов. Такая сталь носит название кипящей и оказывается более загрязненной газами и менее однородной. Механические свойства несколько изменяются по длине слитка ввиду неравномерного распределения химических элементов. Особенно это относится к головной части, которая получается наиболее рыхлой (вследствие усадки и наибольшего насыщения газами), в ней происходит наибольшая ликвация вредных примесей и углерода. Поэтому от слитка отрезают дефектную часть, составляющую примерно 5 % массы слитка. Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, хуже сопротивляются хрупкому разрушению и старению. Чтобы повысить качество низкоуглеродистой стали, ее раскисляют добавками кремния от 0, 12 до 0, 3% или алюминия до 0, 1 %. Кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. При соединении с кислородом раскислители образуют в мелкодисперсной фазе силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образованию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойны м и. От головной части слитка спокойной стали отрезают часть, составляющую примерно 15%. Спокойная сталь более однородна, лучше сваривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Спокойные стали применяются при изготовлении ответственных конструкций, подвергающихся динамическим воздействиям. Однако спокойные стали примерно на 12% дороже кипящих, что заставляет ограничивать их применение и переходить, когда это выгодно по технико-экономическим соображениям, на изготовление конструкций из полуспокойной стали. Полуспокойная сталь по качеству является промежуточной между кипящей и спокойной. Она раскисляется меньшим количеством кремния — 0, 05 — 0, 15% (редко алюминием). От головной части слитка отрезается меньшая часть, равная примерно 8 % массы слитка. По стоимости полуспокойные стали также занимают промежуточное положение. Низколегированные стали поставляются в основном спокойной (редко полуспокойной) модификации.
1.2.2. Нормирование сталей. Основным стандартом, регламентирующим характеристики сталей для строительных металлических конструкций, является ГОСТ 27772 — 88. Согласно ГОСТу фасонный прокат изготовляют из сталей1 С235, С245, С255, С275, С285, С345, С345К, С375, для листового и универсального проката и гнутых профилей используются также стали С390, С390К, С440, С590, С590К. Стали С345, С375, С390 и С440 могут поставляться с повышенным содержанием меди (для повышения коррозионной стойкости), при этом к обозначению стали добавляется буква «Д». Химический состав сталей и механические свойства представлены в табл. 1.2 и 1.3. Прокат может поставляться как в горячекатаном, так и в термообработанном состоянии. Выбор варианта химического состава и вида термообработки определяется заводом. Главное — обеспечение требуемых свойств. Так, листовой прокат стали С345 может изготавливаться из стали с химическим составом С245 с термическим улучшением. В этом случае к обозначению стали добавляется буква Т, например С345Т. В зависимости от температуры эксплуатации конструкций и степени опасности хрупкого разрушения испытания на ударную вязкость для сталей С345 и С375 проводятся при разных температурах, поэтому они поставляются четырех категорий, а к обозначению стали добавляют номер категории, например С345-1; С345-2. Нормируемые характеристики для каждой категории приведены в табл. 1.4. Прокат поставляется партиями. Партия состоит из проката одного размера, одной плавки-ковша и одного режима термообработки. При проверке качества металла от партии отбираются случайным образом по две пробы. Из каждой пробы изготавливают по одному образцу для испытаний на растяжение и изгиб и по два образца для определения ударной вязкости при каждой температуре. Если результаты испытаний не соответствуют требованиям ГОСТа, то проводят по-
вторные испытания на удвоенном числе образцов. Если и повторные испытания показали неудовлетворительные результаты, то партия бракуется. Оценку свариваемости стали проводят по углеродному эквиваленту, %:
(1.2)
где С, Mn, Si, Cr, Ni, Си, V, Р — массовая доля углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора, %. Если С, < 0, 4%, то сварка стали не вызывает затруднений, при 0, 4 %< С, < 0, 55 % сварка возможна, но требует принятия специальных мер по предотвращению возникновения трещины. При Сэ> 0, 55 % опасность появления трещин резко возрастает. Для проверки сплошности металла и предупреждения расслоя в необходимых случаях по требованию заказчика проводится ультразвуковой контроль. Отличительной особенностью ГОСТ 27772 — 88 является использование для некоторых сталей (С275, С285, С375) статистических методов контроля, что гарантирует обеспечение нормативных значений предела текучести и временного сопротивления. Строительные металлические конструкции изготавливаются также из сталей, поставляемых по ГОСТ 380 — 88 «Сталь углеродистая обыкновенного качества», ГОСТ 19281 —73 «Сталь низколегированная сортовая и фасонная», ГОСТ 19282 — 73 «Сталь низколегированная толстолистовая и широкополосная универсальная» и другим стандартам. Принципиальных различий между свойствами сталей, имеющих одинаковый химический состав, но поставляемых по разным стандартам, нет. Разница в способах контроля и обозначениях. Так, по ГОСТ 380 — 88 с изменениями в обозначении марки стали указывается группа поставки, способ раскисления и категория. При поставке по группе А завод гарантирует механические свойства, по группе Б — химический состав, по группе В — механические свойства и химический состав. Степень раскисления обозначается буквами КП (кипящая), СП (спокойная) и ПС (полуспокойная). Категория стали указывает вид испытаний на ударную вязкость: категория 2 — испытания на ударную вязкость не проводятся, 3 — проводятся при температуре +20 °С, 4 — при температуре -20 °С, 5 — при температуре -20 °С и после механического старения, 6 — после механического старения. В строительстве в основном используются стали марок ВстЗкп2, ВстЗпсб и ВстЗсп5, а также сталь с повышенным содержанием марганца ВстЗГпс5. По ГОСТ 19281—73 и ГОСТ 19282 — 73 в обозначении марки стали указывается содержание основных элементов. Например, химический состав стали 09Г2С расшифровывается так: 09 — содержание углерода в сотых долях процента, Г2 — марганец в количестве от 1 до 2 %, С — кремний до 1 %. В конце марки стали указывается категория, т.е. вид испытания на ударную вязкость. Для низколегированных сталей установлено 15 категорий, испытания проводятся при температурах до -70 °С. Стали, поставляемые по разным стандартам, взаимозаменяемы (см. табл. 1.3). Свойства стали зависят от химического состава исходного сырья, способа выплавки и объема плавильных агрегатов, усилия обжатия и температуры при прокатке, условий охлаждения готового проката и т.д. При столь многообразных факторах, влияющих на качество стали, вполне естественно, что показатели прочности и других свойств имеют определенный разброс и их можно рассматривать как случайные величины. Представление об изменчивости характеристик дают статистические гистограммы распределения, показывающие относительную долю (частоту) того или иного значения характеристики. 1.2.4.Стали повышенной прочности (29 кН/см2< < 40 кН/см2). Стали повышенной прочности (С345 — С390) получают либо введением при выплавке стали легирующих Пластичность стали при этом несколько снижается, и протяженность площадки текучести уменьшается до 1 —1, 5 %. Стали повышенной прочности несколько хуже свариваются (особенно стали с высоким содержанием кремния) и требуют иногда использования специальных технологических мероприятий для предотвращения образования горячих трещин. По коррозионной стойкости большинство сталей этой группы близки к низкоуглеродистым сталям. Более высокой коррозионной стойкостью обладают стали с повышенным содержанием меди (С345Д, С375Д, С390Д). Мелкозернистая структура низколегированных сталей обеспечивает значительно более высокое сопротивление хрупкому разрушению. Высокое значение ударной вязкости сохраняется при температуре -40 °С и ниже, что позволяет использовать эти стали для конструкций, эксплуатируемых в северных районах. За счет более высоких прочностных свойств применение сталей повышенной прочности приводит к экономии металла до 20 —25 %. 1.2.5.Стали высокой прочности ( > 40 кН/см2). Прокат стали высокой прочности Для легирования используются нитридообразующие элементы, способствующие образованию мелкозернистой структуры. Стали высокой прочности могут не иметь площадки текучести (при о> , > 50 кН/см2), и их пластичность (относительное удлинение) снижается до 14% и ниже. Отношение увеличивается до 0, 8 — 0, 9, что не позволяет учитывать при расчете конструкций из этих сталей пластические деформации. Подбор химического состава и режима термообработки позволяет значительно повысить сопротивление хрупкому разрушению и обеспечить высокую ударную вязкость при температуре до -70 °С. Определенные трудности возникают при изготовлении конструкций. Высокая прочность и низкая пластичность требуют более мощного оборудования для резки, правки, сверления и других операций. При сварке термообработанных сталей вследствие неравномерного нагрева и быстрого охлаждения в разных зонах сварного соединения происходят различные структурные превращения. На одних участках образуются закалочные структуры, обладающие повышенной прочностью и хрупкостью (жесткие прослойки), на других металл подвергается высокому отпуску и имеет пониженную прочность и высокую пластичность (мягкие прослойки). Разупрочнение стали в околошовной зоне может достигать 5 — 30%, что необходимо учитывать при проектировании сварных конструкций из термообработанных сталей. Введение в состав стали некоторых карбидообразующих элементов (молибден, ванадий) снижает эффект разупрочнения. Применение сталей высокой прочности приводит к экономии металла до 25 —30 % по сравнению с конструкциями из низкоуглеродистых сталей и особенно целесообразно в большепролетных и тяжело нагруженных конструкциях. 1.2.6.Атмосферостойкие стали. Для повышения коррозионной стойкости метали- В конструкциях, подвергающихся атмосферным воздействиям, весьма эффективны стали с добавкой фосфора (например, сталь С345К). На поверхности таких сталей образуется тонкая оксидная пленка, обладающая достаточной прочностью и защищающая металл от развития коррозии. Однако свариваемость стали при наличии фосфора ухудшается. Кроме того, в прокате больших толщин металл обладает пониженной хладностойко-стью, поэтому применение стали С345К рекомендуется при толщинах не более 10 мм. В конструкциях, совмещающих несущие и ограждающие функции (например, мембранные покрытия), широко применяется тонколистовой прокат. Для повышения долговечности таких конструкций целесообразно применение нержавеющей хромистой стали марки ОХ18Т1Ф2, не содержащей никеля. Механические свойства стали ОХ18Т1Ф2: = 50 кН/см2, = 36 кН/см2, > 33 %. При больших толщинах прокат из хромистых сталей обладает повышенной хрупкостью, однако свойства тонколистового проката (особенно толщиной до 2 мм) позволяют применять его в конструкциях при расчетных температурах до -40 °С. 1.2.7. Выбор сталей для строительных металлических конструкций. Выбор стали производится на основе вариантного проектирования и технико-экономического анализа с учетом рекомендаций норм. В целях упрощения заказа металла при выборе стали следует стремиться к большей унификации конструкций, сокращению числа сталей и профилей. Выбор стали зависит от следующих параметров, влияющих на работу материала: температуры среды, в которой монтируется и эксплуатируется конструкция. Этот фактор учитывает повышенную опасность хрупкого разрушения при пониженных температурах; характера нагружения, определяющего особенность работы материала и конструкций при динамической, вибрационной и переменной нагрузках; вида напряженного состояния (одноосное сжатие или растяжение, плоское или объемное напряженное состояние) и уровня возникающих напряжений (сильно или слабо нагруженные элементы); способа соединения элементов, определяющего уровень собственных напряжений, степень концентрации напряжений и свойства материала в зоне соединения; толщины проката, применяемого в элементах. Этот фактор учитывает изменение свойств стали с увеличением толщины. В зависимости от условий работы материала все виды конструкций подразделяются на четыре группы. К первой группе относятся сварные конструкции, работающие в особо тяжелых условиях или подвергающиеся непосредственному воздействию динамических, вибрационных или подвижных нагрузок (например, подкрановые балки, балки рабочих площадок или элементы эстакад, непосредственно воспринимающих нагрузку от подвижных составов, фасонки ферм и т.д.). Напряженное состояние таких конструкций характеризуется высоким уровнем и большой частотой загружения. Конструкции первой группы работают в наиболее сложных условиях, способствующих возможности их хрупкого или усталостного разрушения, поэтому к свойствам сталей для этих конструкций предъявляются наиболее высокие требования. Ко второй группе относятся сварные конструкции, работающие на статическую нагрузку при воздействии одноосного и однозначного двухосного поля растягивающих напряжений (например, фермы, ригели рам, балки перекрытий и покрытий и другие растянутые, растянуто-изгибаемые и изгибаемые элементы), а также конструкции первой группы при отсутствии сварных соединений. Общим для конструкций этой группы является повышенная опасность хрупкого разрушения, связанная с наличием поля растягивающих напряжений. Вероятность усталостного разрушения здесь меньше, чем для конструкций первой группы. К третьей группе относятся сварные конструкции, работающие при преимущественном воздействии сжимающих напряжений (например, колонны, стойки, опоры под оборудование и другие сжатые и сжато-изгибаемые элементы), а также конструкции второй группы при отсутствии сварных соединений. К четвертой группе относятся вспомогательные конструкции и элементы (связи, элементы фахверка, лестницы, ограждения и т.п.), а также конструкции третьей группы при отсутствии сварных соединений.
Если для конструкций третьей и четвертой групп достаточно ограничиться требованиями к прочности при статических нагрузках, то для конструкций первой и второй групп важна оценка сопротивления стали динамическим воздействиям и хрупкому разрушению. В материалах для сварных конструкций обязательно следует оценивать свариваемость. Требования к элементам конструкций, не имеющих сварных соединений, могут быть снижены, так как отсутствие полей сварочных напряжений, более низкая концентрация напряжений и другие факторы улучшают их работу. В пределах каждой группы конструкций в зависимости от температуры эксплуатации к сталям предъявляются требования по ударной вязкости при различных температурах. В нормах содержится перечень сталей в зависимости от группы конструкций и климатического района строительства. Окончательный выбор стали в пределах каждой группы должен выполняться на основании сравнения технико-экономических показателей (расхода стали и стоимости конструкций), а также с учетом заказа металла и технологических возможностей завода-изготовителя. В составных конструкциях (например, составных балках, фермах и т. п.) экономически целесообразно применение двух сталей: более высокой прочности для сильно нагруженных элементов (пояса ферм, балок) и меньшей прочности для слабо нагруженных элементов (решетка ферм, стенки балок). 1.2.8. Алюминиевые сплавы. Алюминий по своим свойствам существенно отличается от стали. Его плотность = 2, 7 т/м3, т.е. почти в 3 раза меньше плотности стали. Модуль продольной упругости алюминия Е=71 000 МПа, модуль сдвига G = 27 000 МПа, что примерно в 3 раза меньше, чем модуль продольной упругости и модуль сдвига стали. Алюминий не имеет площадки текучести. Прямая упругих деформаций непосредственно переходит в кривую упругопластических деформаций (рис. 1.7). Алюминий очень пластичен: удлинение при разрыве достигает 40 — 50%, но прочность его весьма низкая: = 6...7 кН/см2, а условный предел текучести = 2...3 кН/см2. Чистый алюминий быстро покрывается прочной оксидной пленкой, препятствующей дальнейшему развитию коррозии. Вследствие весьма низкой прочности технически чистый алюминий в строительных конструкциях применяется довольно редко. Значительное увеличение прочности алю-миния достигается путем легирования его магнием, марганцем, медью, кремнием. цинком и некоторыми другими элементами.
Временное сопротивление легированного алюминия (алюминиевых сплавов) в зависимости от состава легирующих добавок в 2 —5 раз выше, чем технически чистого; однако относительное удлинение при этом соответственно в 2 — 3 раза ниже. С повышением температуры прочность алюминия снижается и при температуре свыше 300 °С близка к нулю (см. рис. 1.7). Особенностью ряда многокомпонентных сплавов А1 — Mg — Si, Al — Си — Mg, Al — Mg— Zn является их способность к дальнейшему увеличению прочности в процессе старения после термической обработки; такие сплавы называются термически упрочняемыми. Временное сопротивление некоторых высокопрочных сплавов (системы Al — Mg — Zn) после термической обработки и искусственного старения превышает 40 кН/см2, относительное удлинение при этом составляет всего 5—10 %. Термическая обработка сплавов двойной композиции (Al —Mg, Al— Mn) к упрочнению не приводит, такие сплавы получили название термически неупрочняемых. Повышение условного предела текучести изделий из этих сплавов в 1, 5 — 2 раза может быть достигнуто холодной деформацией (нагартовкой), относительное удлинение при этом также существенно снижается. Следует отметить, что показатели всех основных физических свойств сплавов вне зависимости от состава легирующих элементов и состояния практически не отличаются от показателей для чистого алюминия. Коррозионная стойкость сплавов зависит от состава легирующих добавок, состояния поставки и степени агрессивности внешней среды. Полуфабрикаты из алюминиевых сплавов изготавливают на специализированных заводах: листы и ленты — прокаткой на многовалковых станах; трубы и профили — методом экструзии на горизонтальных гидравлических прессах, позволяющим получить профили самой разнообразной формы сечения, в том числе и с замкнутыми полостями. На отправляемых с завода полуфабрикатах указывается марка сплава и состояние поставки: М — мягкое (отожженное); Н — нагартованное; Н2 — полунагартованное; Т — закаленное и естественно состаренное в течение 3 — 6 сут при комнатной температуре; Т1 — закаленное и искусственно состаренное в течение нескольких часов при повышенной температуре; Т4 — не полностью закаленное и естественно состаренное; Т5 — не полностью закаленное и искусственно состаренное. Полуфабрикаты, поставляемые без обработки, дополнительного обозначения не имеют. Из большого числа марок алюминия к применению в строительстве рекомендуются следующие: -термически неупрочняемые сплавы: АД1 и АМцМ; АМг2М и АМг2МН2 (листы); АМг2М (трубы); -термически упрочняемые сплавы: АД31Т1; АД31Т4 и АД31Т5 (профили); -1915 и 1915Т; 1925 и 1925Т; 1935, 1935Т, АД31Т (профили и трубы). Все указанные выше сплавы, за исключением сплава 1925Т, который используется только для клепаных конструкций, хорошо свариваются. Для литых деталей используется литейный сплав марки АЛ8. Конструкции из алюминия благодаря малой массе, стойкости против коррозии, хладностойкости, антимагнитности, отсутствию искрообразования, долговечности и хорошему виду имеют широкие перспективы применения во многих областях строительства. Однако из-за высокой стоимости использование алюминиевых сплавов в строительных конструкциях ограничено.
|