Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод Ньютона
Квадратичная аппроксимация функции цели. Необходимым условием сходимости метода является существование обратной матрицы во всех генерируемых точках. Доказательство сходимости метода получено при условии, что начальная точка достаточно близка к точке минимума. При этом метод имеет высокую скорость сходимости. Если поиск начинается с удаленной точки и функция существенно отличается от квадратичной, метод может не сходиться или давать слабую сходимость. Методы сопряженных направлений Методы сопряженных направлений основаны на свойствах квадратичных функций. Пусть дана матрица Н n ´ n. Направления d 1, d 2,..., d k (k £ n) называются сопряженными или Н-сопряженными, если они линейно независимы и .(52) Для квадратичной функции n переменных сопряженные направления позволяют найти минимум не более чем за n одномерных поисков. В случае нелинейной функции, отличной от квадратичной, конечное число итераций дает только приближенное решение.
|