Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Угол между прямой и плоскостью. Условие параллельности и перпендикулярности.






Дана плоскость и точка А вне этой плоскости.

Проекцией точки А на плоскость называется основание Q перпендикуляра, проведенного из этой точки к плоскости.

Пусть а — произвольная прямая, пересекающая плоскость в точке О, причем прямая а не перпендикулярна плоскости (рис. 40).

Прямая а и перпендикуляр AQ (А € а) определяют плоскость , _|_ .

Прямая a1, проходящая через точки О и Q, называется проекцией а на плоскость .

Углом между прямой а и плоскостью , пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой а и ее проекцией a1 на плоскость (рис. 40).

Если прямая а перпендикулярна плоскости , то ее проекцией на плоскость представляет собой точку О, а угол между а и считается прямым (равным 90°).

Если прямая а параллельна плоскости , то угол между ними принимают равным нулю.

Условия параллельности двух прямых:

а) Если прямые заданы уравнениями с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

k 1 = k 2.

б) Для случая, когда прямые заданы уравнениями в общем виде, необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал