Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Угол между прямой и плоскостью. Условие параллельности и перпендикулярности.
Дана плоскость и точка А вне этой плоскости. Проекцией точки А на плоскость называется основание Q перпендикуляра, проведенного из этой точки к плоскости. Пусть а — произвольная прямая, пересекающая плоскость в точке О, причем прямая а не перпендикулярна плоскости (рис. 40). Прямая а и перпендикуляр AQ (А € а) определяют плоскость , _|_ . Прямая a1, проходящая через точки О и Q, называется проекцией а на плоскость . Углом между прямой а и плоскостью , пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой а и ее проекцией a1 на плоскость (рис. 40). Если прямая а перпендикулярна плоскости , то ее проекцией на плоскость представляет собой точку О, а угол между а и считается прямым (равным 90°). Если прямая а параллельна плоскости , то угол между ними принимают равным нулю. Условия параллельности двух прямых: а) Если прямые заданы уравнениями с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов: k 1 = k 2. б) Для случая, когда прямые заданы уравнениями в общем виде, необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е. Условия перпендикулярности двух прямых: а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.
|