Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Симметричного и ортогонального
Теорема 7.14. Пусть – действительное евклидово пространство. Для любого невырожденного линейного оператора существуют симметричный и ортогональный операторы такие, что . ► Рассмотрим линейный оператор . Так как , то оператор симметричный. Если – собственное значение оператора , а – соответствующий ему собственный вектор, то . С другой стороны, . Итак, , откуда вытекает, что . На самом деле, в силу невырожденности , . Как и для любого симметричного оператора, для в существует ортонормированный базис , (7.25) в котором матрица оператора имеет диагональный вид , причем , и не обязательно различные. Обозначим тот линейный оператор, который в базисе (7.25) имеет матрицу . Так как , то . Очевидно, оператор – симметричный и невырожденный, поэтому существует обратный ему линейный оператор , также симметричный (его матрица в базисе (7.25) – это
, она тоже симметрична). Положим . (7.26) Учитывая, что [симметрия ] = , делаем вывод, что – ортогональный оператор. Теперь из (7.26) получаем . ◄ Можно доказать, что эта теорема справедлива и для вырожденных линейных операторов. Следствие. Любая действительная квадратная матрица может быть представлена в виде произведения ортогональной и симметричной матриц.
|