Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Алгоритм метода потенциалов. 3 страница
Если случайный процесс, происходящий в системе с дискретными состояниями является непрерывной марковской цепью, то для вероятностей p1(t), р2(t), …, pn(t) можно составить систему линейных дифференциальных уравнений, называемых уравнениями Колмогорова. При составлении уравнений удобно пользоваться графом состояний системы. В левой части каждого из них стоит производная вероятности какого-то (j-го) состояния. В правой части – сумма произведений вероятностей всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков, минус суммарная интенсивность всех потоков, выводящих систему из данного (j-го) состояния, умноженная на вероятность данного (j-го) состояния. Процессы гибели и размножения. Так называется широкий класс случайных процессов, происходящих в системе, размеченный граф состояний которой изображен на рис. 3.
Рисунок 2 – Граф состояний для процессов гибели и размножения Здесь величины Поскольку все состояния являются сообщающимися и существенными, существует (в силу теоремы 2) предельное (финальное) распределение вероятностей состояний. Получим формулы для финальных вероятностей состояний системы. В стационарных условиях для каждого состояния поток, входящий в данное состояние должен равняться потоку, исходящему из данного состояния. Таким образом, имеем: Для состояния S0:
Следовательно:
Для состояния S1:
Следовательно:
С учетом того, что
Аналогично получаем уравнения для остальных состояний системы. В результате получим систему уравнений:
Решение этой системы будет иметь вид:
Заявкой (или требованием) называется спрос на удовлетворение какой-либо потребности (далее потребности предполагаются однотипными). Выполнение заявки называется обслуживанием заявки. Системой массового обслуживания (СМО) называется любая система для выполнения заявок, поступающих в неё в случайные моменты времени. Поступление заявки в СМО называется событием. Последовательность событий, заключающихся в поступлении заявок в СМО, называется входящим потоком заявок. Последовательность событий, заключающихся в выполнении заявок в СМО, называется выходящим потоком заявок. Поток заявок называется простейшим, если он удовлетворяет следующим условиям: 1) отсутствие последействия, т.е. заявки поступают независимо друг от друга; 2) стационарность, т.е. вероятность поступления данного числа заявок на любом временном отрезке [t1; t2] зависит лишь от величины этого отрезка и не зависит от значения t1, что позволяет говорить о среднем числе заявок за единицу времени, λ, называемом интенсивностью потока заявок; 3) ординарность, т.е. в любой момент времени в СМО поступает лишь одна заявка, а поступление одновременно двух и более заявок пренебрежимо мало. Для простейшего потока вероятность pi(t) поступления в СМО ровно i заявок за время t вычисляется по формуле:
т.е. вероятности распределены по закону Пуассона с параметром λ t. По этой причине простейший поток называется также пуассоновским потоком. Функция распределения F(t) случайного интервала времени T между двумя последовательными заявками по определению равна
Плотность вероятности f(t) случайной величины T определяется формулой:
Математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины T равны соответственно:
Каналом обслуживания называется устройство в СМО, обслуживающее заявку. СМО, содержащее один канал обслуживания, называется одноканальной, а содержащее более одного канала обслуживания – многоканальной. Если заявка, поступающая в СМО, может получить отказ в обслуживании (в силу занятости всех каналов обслуживания) и в случае отказа вынуждена покинуть СМО, то такая СМО называется СМО с отказами. Если в случае отказа в обслуживании заявки могут вставать в очередь, то такие СМО называются СМО с очередью (или с ожиданием). При этом различают СМО с ограниченной и неограниченной очередью. Очередь может быть ограничена как по количеству мест, так и по времени ожидания. Различают СМО открытого и замкнутого типа. В СМО открытого типа поток заявок не зависит от СМО. В СМО замкнутого типа обслуживается ограниченный круг клиентов, а число заявок может существенно зависеть от состояния СМО (например, бригада слесарей – наладчиков, обслуживающих станки на заводе). СМО могут также различаться по дисциплине обслуживания. Если в СМО нет приоритета, то заявки отбираются из очереди в канал по различным правилам. · Первым пришел – первым обслужен (FCFS – First Came – First Served) · Последним пришел – первым обслужен (LCFS – Last Came – First Served) · Первоочередное обслуживание требований с кратчайшей длительностью обслуживания (SPT/SJE) · Первоочередное обслуживание требований с кратчайшей длительностью дообслуживания (SRPT) · Первоочередное обслуживание требований с кратчайшей средней длительностью обслуживания (SEPT) · Первоочередное обслуживание требований с кратчайшей средней длительностью дообслуживания (SERPT) Приоритеты бывают двух типов – абсолютный и относительный. Если требование в процессе обслуживания может быть удалено из канала и возвращено в очередь (либо вовсе покидает СМО) при поступлении требования с более высоким приоритетом, то система работает с абсолютным приоритетом. Если обслуживание любого требования, находящегося в канале не может быть прервано, то СМО работает с относительным приоритетом. Существуют также приоритеты, осуществляемые с помощью конкретного правила или набора правил. Примером может служить приоритет, изменяющийся с течением времени. СМО описываются некоторыми параметрами, которые характеризуют эффективность работы системы.
При этом:
А – среднее число заявок, обслуживаемых в СМО в единицу времени (абсолютная пропускная способность СМО)
где
Здесь
Для открытых СМО справедливы соотношения:
Эти соотношения называются формулами Литтла и применяются только для стационарных потоков заявок и обслуживания. Рассмотрим некоторые конкретные типы СМО. При этом будет предполагаться, что плотность распределения промежутка времени между двумя последовательными событиями в СМО имеет показательное распределение (7), а все потоки являются простейшими. Размеченный граф состояний одноканальной СМО представлен на рисунке 3.
Рисунок 3 – Граф состояний одноканальной СМО Здесь Система дифференциальных уравнений Колмогорова для такой СМО имеет вид:
где po(t) и p1(t) – вероятности нахождения СМО в состояниях So и S1 соответственно. Уравнения для финальных вероятностей po и p1 получим, приравнивая нулю производные в первых двух уравнениях системы. В результате получим:
Вероятность p0 по своему смыслу есть вероятность обслуживания заявки pобс, т. к. канал является свободным, а вероятность р1 по своему смыслу является вероятностью отказа в обслуживании поступающей в СМО заявки ротк, т. к. канал занят обслуживанием предыдущей заявки. Пусть СМО содержит n каналов, интенсивность входящего потока заявок равна
Рисунок 4 – Граф состояний многоканальной СМО с отказами Состояние S0 означает, что все каналы свободны, состояние Sk (k = 1, n) означает, что обслуживанием заявок заняты k каналов. Переход из одного состояния в другое соседнее правое происходит скачкообразно под воздействием входящего потока заявок интенсивностью Сравнивая графы на рис. 3 и на рис. 5 легко увидеть, что многоканальная СМО с отказами является частным случаем системы рождения и гибели, если в последней принять
При этом для нахождения финальных вероятностей можно воспользоваться формулами (4) и (5). С учётом (16) получим из них:
Формулы (17) и (18) называются формулами Эрланга – основателя теории массового обслуживания. Вероятность отказа в обслуживании заявки ротк равна вероятности того, что все каналы заняты, т.е. система находится в состоянии Sn. Таким образом,
Относительную пропускную способность СМО найдём:
Абсолютную пропускную способность найдём
Среднее число занятых обслуживанием каналов можно найти по формуле (10), однако сделаем это проще. Так как каждый занятый канал в единицу времени обслуживает в среднем
В СМО с ограниченной очередью число мест m в очереди ограничено. Следовательно, заявка, поступившая в момент времени, когда все места в очереди заняты, отклоняется и покидает СМО. Граф такой СМО представлен на рисунке 5.
Рисунок 5 – Граф состояний одноканальной СМО с ограниченной очередью Состояния СМО представляются следующим образом: S0 – канал обслуживания свободен, S1 – канал обслуживания занят, но очереди нет, S2 – канал обслуживания занят, в очереди одна заявка, Sk+1 – канал обслуживания занят, в очереди k заявок, Sm+1 – канал обслуживания занят, все m мест в очереди заняты. Для получения необходимых формул можно воспользоваться тем обстоятельством, что СМО на рисунок 5 является частным случаем системы рождения и гибели, представленной на рисунке 2, если в последней принять
Выражения для финальных вероятностей состояний рассматриваемой СМО можно найти из (4) и (5) с учётом (21). В результате получим: При р = 1 формулы (22), (23) принимают вид При m = 0 (очереди нет) формулы (22), (23) переходят в формулы (14) и (15) для одноканальной СМО с отказами. Поступившая в СМО заявка получает отказ в обслуживании, если СМО находится в состоянии Sm+1, т.е. вероятность отказа в обслуживании заявки равна:
Относительная пропускная способность СМО равна:
Абсолютная пропускная способность равна:
Среднее число заявок, стоящих в очереди Lоч, находится по формуле
и может быть записано в виде:
При
и может быть записано в виде:
При
Среднее время пребывания заявки в СМО и в очереди находится по формулам (12) и (13) соответственно. Примером такой СМО может служить директор предприятия, вынужденный рано или поздно решать вопросы, относящиеся к его компетенции, или, например, очередь в булочной с одним кассиром. Граф такой СМО изображён на рисунке 6.
Рисунок 6 – Граф состояний одноканальной СМО с неограниченной очередью Все характеристики такой СМО можно получить из формул предыдущего раздела, полагая в них Рассмотрим случай, когда
Поскольку в СМО отсутствует ограничение на длину очереди, то любая заявка может быть обслужена, т.е. относительная пропускная способность равна:
Абсолютная пропускная способность равна:
Среднее число заявок в очереди получим из формулы (24) при
Среднее число обслуживаемых заявок есть:
Среднее число заявок, находящихся в СМО:
Среднее время пребывания заявки в СМО и в очереди определяются формулами (12) и (13). Пусть на вход СМО, имеющей Граф такой системы представлен на рисунке 7.
Рисунок 7 – Граф состояний многоканальной СМО с ограниченной очередью
Сравнение графов на рисунке 2 и рисунке 7 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):
Выражения для финальных вероятностей легко найти из формул (4) и (5). В результате получим:
Образование очереди происходит, когда в момент поступления в СМО очередной заявки все каналы заняты, т.е. в системе находятся либо n, либо (n+1), …, либо (n + m – 1) заявок. Т.к. эти события несовместны, то вероятность образования очереди pоч равна сумме соответствующих вероятностей
Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е.:
Относительная пропускная способность равна:
Абсолютная пропускная способность:
Среднее число заявок, находящихся в очереди, определяется по формуле (11) и может быть записано в виде:
Среднее число заявок, обслуживаемых в СМО, может быть записано в виде:
Среднее число заявок, находящихся в СМО:
Среднее время пребывания заявки в СМО и в очереди определяется формулами (12) и (13). Граф такой СМО изображен на рисунке 8 и получается из графа на рисунке 7 при
Рисунок 8 – Граф состояний многоканальной СМО с неограниченной очередью Формулы для финальных вероятностей можно получить из формул для n-канальной СМО с ограниченной очередью при
Формулы для остальных вероятностей имеют тот же вид, что и для СМО с ограниченной очередью:
Из (27) получим выражение для вероятности образования очереди заявок:
Поскольку очередь не ограничена, то вероятность отказа в обслуживании заявки:
Относительная пропускная способность:
Абсолютная пропускная способность:
Из формулы (28) при
Среднее число обслуживаемых заявок определяется формулой:
|