Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Генна інженерія
Генна інженерія - галузь молекулярної біології і генетики, завдання якої - конструювання генетичних структур за заздалегідь наміченим планом, створення організмів із новою генетичною програмою. Виникнення генної інженерії стало можливим завдяки синтезу ідей і методів молекулярної біології, генетики, біохімії і мікробіології. Основні етапи включали три основних періоди: а) отримання генетичного матеріалу (штучний синтез або виділення природних генів); б) включення цих генів у генетичну структуру, яка реплікується автономно (векторну молекулу ДНК), тобто створення рекомбінантної молекули ДНК; в) введення векторної молекули (з включеним у неї геном) у клітину-реципієнта, де вона вмонтовується в хромосомний апарат. Експериментальне перенесення генів в інший геном називається трансгенезом. Він грунтується на технології рекомбінантної ДНК. В основі генної інженерії лежать різні методи маніпуляцій із молекулами ДНК. У сучасній генетиці використовуються два способи синтезу генів поза організмом - хімічний і ферментативний. Для хімічного синтезу необхідно мати повністю розшифровану послідовність нуклеотидів ДНК Ферментативний синтез генів здійснюють за допомогою процесу зворотної транскрипції. Відкриття цього процесу зроблено на пухлиноутворювальних РНК-вмісних вірусах. Проте згодом виявилося, що передавання генетичної інформації з іРНК на ДНК може відбуватися в умовах експерименту і з іншими РНК. Саме це лежить в основі ферментативного синтезу гена Гени, синтезовані за допомогою ревертази, не мають регуляторної частини і промотора. Відсутність регуляторних ділянок перешкоджає функціонуванню цих штучних генів у тваринних клітинах. При перенесенні в мікробну клітину до структурних генів експериментально, за допомогою ферментів, приєднують промотор, який добувають з мікробної клітини. Ферментативний синтез генів має велике значення, тому що принципово можливо проводити штучний синтез будь-яких індивідуальних генів шляхом транскрибування їх із відповідних матричних РНК. Основною перешкодою є синтез не структурних, а регуляторних частин генів, необхідних для їх нормальної роботи. Це здебільшого обмежує використання штучно синтезованих генів. У генній інженерії широко використовують так само і виділення природних генів з метою створення рекомбінативних молекул ДНК. Клонування генів - це процес, що включає виділення й ампліфікацію (дублювання великої кількості)окремих генів у реципієнтних про- й еукаріотичних клітинах. Ці клітини, які містять потрібний нам ген, можна використовувати для одержання: а) великої кількості білка, що кодується даним геном, або б) великої кількості самого гена у високоочищеному вигляді. Інший важливий напрямок біотехнології - виробництво вакцин. Такі вакцини не можуть викликати хвороб, тому що виготовляються з одного із поверхневих білків. Ген такого білка використовується для біореконструкції бактерії. Так створена вакцина проти гепатиту В. Успішно ведеться робота над вакцинами для гепатитів А, С, хламідіозів, герпесу й інших захворювань.Трансгенні організми. За допомогою методів генної інженерії можна одержати різні організми, які мають у складі свого геному чужорідні гени інших організмів. Такі організми називаються трансгенними. У даний час ця галузь науки швидко розвивається.У різних галузях господарської діяльності людини використовуються трансгенні бактерії. Крім того, що бактерії використовуються для клонування генів і виробництва білка, вони реконструюються і для інших цілей.Так, біоінженерні бактерії використовуються для оздоровлення рослин. У природі існують бактерії, що можуть розщепити будь-яку органічну речовинуБактерії використовують для бактеріального синтезу. Так, були реконструйовані бактерії для виробництва амінокислоти фенілаланіну. Зручним об'єктом для генетичних маніпуляцій виявилися рослини, тому що рослинні клітини можна вирощувати в культурі, де із кожної клітини отримують цілу рослину.Ведуться роботи зі створення біоінженерних рослин, що могли б мати наступні властивості: 1) високу пристосованість до умов зовнішнього середовища; 2) містити більшу кількість необхідних для людини поживних речовин; 3) тривалий час зберігатися без псування.Розробляються трансгенні рослини, здатні продукувати в інтересах людини хімічні речовини й ліки Швидкими темпами розвивається біоінженерія тварин. Яйцеклітину поміщають у спеціальну мішалку разом з чужорідною ДНК і дрібними силікон-карбідними голками. Голки роблять множинні отвори в оболонці, крізь які ДНК попадає в клітину. За допомогою цієї технології бичачий гормон росту був введений у яйцеклітини багатьох видів тварин. Завдяки цій технології отримані великі риби, корови, свині, кролики, вівці. Проте трансгенна технологія є неточною, тому що введення ДНК не спрямоване у визначений локус хромосоми. Ген, що переноситься, може порушити функцію іншого гена або потрапити під контроль інших генів. Навіть якщо трансген вставляється в хромосому й експресується, його ефект може бути перекритий таким же геном клітини-хазяїна. " Націлювання" гена - складна методологія, вона не працює у заплідненій яйцеклітині ссавців. Ген можна впровадити тільки в клітини на ранніх етапах розвитку зародка, до його імплантації у стінку матки. Клітини такого зародка тотипотентні і багато генів у них ще не експресовані." Націлювання" гена має велике значення при створенні моделей генетичної патології у тварин. Важливо те, що вчені ідентифікують версію людського апеля, який викликає хворобу у тварин. Потім відповідний людський мутантний алель переноситься в ембріональні стовбурові клітини і, нарешті, схрещують тварин, гомозиготних за інактивованим геном.
|