Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Гаусса. Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к






Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Преобразования Гаусса удобно проводить, осуществляя преобразования не с самими уравнениями, а с матрицей их коэффициентов. Рассмотрим матрицу

,

называемую расширенной матрицей системы (1), потому что в нее кроме матрицы системы А, дополнительно включен столбец свободных членов.

Пример:

Расширенная матрица системы имеет вид:

Шаг 1. Так как , то умножая первую строку на числа -2, -3, -2 и прибавляя полученные строки соответственно ко второй, третьей, четвертой строкам, исключим переменную х1 из всех строк, начиная со второй. Заметив что в новой матрице , поменяем местами вторую и третью строки:

Шаг 2. Так как теперь , то умножая вторую строку на -7/4 и прибавляя полученную строку к четвертой, исключим переменную х2 из всех строк, начиная с третьей:

Шаг 3. Учитывая, что , умножаем третью строку на 13, 5/8=27/16, и прибавляя полученную строку к четвертой, исключим из нее переменную х3. Получим систему уравнений

откуда найдем из четвертого уравнения х4 =-2; из третьего ; из второго и из первого уравнения .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал