Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Интерполяционная формула Ньютона.






Пусть . Построим первую разделенную разность

.

Откуда находим

.

Построим вторую разделенную разность

и выразим из нее :

.

Подставим в выражение для :

.

Аналогично привлекаем следующие узлы интерполяции для построения интерполяционной функции.

После использования всех узлов интерполяции:

Таким образом, интерполяционный многочлен Ньютона имеет вид

.

Непосредственной проверкой нетрудно убедиться, что

.

Погрешность интерполяции

.

Более эффективное вычисление значения функции по интерполяционной формуле Ньютона можно получить, если преобразовать ее к такому виду:

Интерполяционная формула Ньютона позволяет легко наращивать число узлов интерполяции, требуя при этом вычисления лишь дополнительных слагаемых. Например, добавление узла приведет к вычислению слагаемого

.

 

? 13. Приближение функций методом наименьших квадратов. (методичка)

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал