Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение типовых примеровСтр 1 из 15Следующая ⇒
Задание № 2 В задачах 11-20 вычислить пределы функции: 21. a) (2x2-3x+4); б) ; в) ; 22. a) (3x3+x2+8x+10); б) ; в) ; 23. a) (x3-x2+1); б) ; в) ; 24. a) (2x2-8x+4); б) ; в) ; 25. a) (2x2-4x+5); б) ; в) ; 26. a) (-3x2+4x-8); б) ; в) ; 27. a) (4x4-5x2+4); б) ; в) ; 28. a) (4x3-2x-1); б) ; в) ; 29. a) (2x2+4x); б) ; в) ; 30. a) (x3-x2+1); б) ; в) .
Решение типовых примеров Вычислить пределы: 1) (4x-x2+8). В этом примере необходимо провести непосредственную подстановку. (4x-x2+8)=4·3-32+8=12-9+8=11 2) = . Непосредственная подстановка приводит к неопределенности типа . Чтобы раскрыть эту неопределенность, разложим числитель и знаменатель на множители и сократим члены дроби на общий множитель (х-2). Числитель: 2х2+х-10=2(х-2)(х+ ) 2х2+х-10=0 D=1-4·2(-10)=1+80=81 x1= x2= Используемые формулы: – расположение квадратного трехчлена на множители ax2+bx+c=a(x-x1)(x-x2), где х1, х2 корни квадратного уравнения ax2+bx+c=0. – D=b2-4ac x1= ; x2= Знаменатель: 5х-10=5(х-2) = = =
3) = В этом примере получается неопределенность вида , избавиться от которой можно вынесением за скобки в числителе и в знаменателе дроби старшей степени переменной: =
|